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Abstract: We study the decay of the unstable D-particle in three-dimensional anti-de

Sitter space-time using worldsheet boundary conformal field theory methods. We test the

open string completeness conjecture in a background for which the phase space available

is only field-theoretic. This could present a serious challenge to the claim. We compute

the emission of closed strings in the AdS3× S3× T4 background from the knowledge of the

exact corresponding boundary state we construct. We show that the energy stored in the

brane is mainly converted into very excited long strings. The energy stored in short strings

and in open string pair production is much smaller and finite for any value of the string

coupling. We find no ”missing energy” problem. We compare our results to those obtained

for a decay in flat space-time and to a background in the presence of a linear dilaton. Some

remarks on holographic aspects of the problem are made.
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1. Introduction and summary

Understanding the physics of time-dependent backgrounds is one of the the greatest chal-

lenges in string theory. It is important for the understanding of basic issues in quantum

gravity and for obtaining some hints of stringy effects in primordial cosmology. The cur-

rent technology, based on a topological expansion of string worldsheets in a first quantized

framework, leaves many problems unsolved, such as understanding the analytical continu-

ation to Lorentzian signature and backreaction that arises in time-dependent space-times.

Some exact two-dimensional conformal field theories with a time-dependent target space-

time were analyzed [1 – 5]. It is not easy to extract physical information from them, in
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particular due to the presence of singularities in the correlators in some cases [6 – 8], that

may signal a large back-reaction on the geometry [9, 10] and the breakdown of perturbation

theory (see however [11]).

Time-dependent backgrounds also play an important role in the search for new string

vacua in the string background landscape. Detecting and following infrared instabilities

in space-time and on the worldsheet has been a tool for such investigations. The more

risky expeditions were those following the trajectories of closed string tachyons (see for

example [12]). Following open string tachyons (see [13, 14], the review [15] and references

therein) and localized closed string tachyons (see for example [16, 17]) is somewhat more

tractable and also of great interest.

In this paper we study some aspects of a particular time-dependent process involving

the decay of unstable D-branes, described by an integrable boundary deformation of the

string worldsheet [18, 19]. The main simplification is that the minimum of the tachyon

potential, the closed string vacuum, is known [20]. The study of open string tachyon

condensation is not only important to unveil fundamental aspects of string theory dynamics

but also to attempt to build realistic cosmological scenarios in string theory [21, 22].

The tree-level computation of closed string production leads to an exponentially di-

vergent emission of highly massive non-relativistic excited strings [23, 24]. This divergence

is unphysical for any non-zero value of gs (because the initial energy available is finite and

equal to the D-brane mass), and indicates in that case inherent difficulties in a perturbative

analysis. Considerations following from the space-time effective action also suggest that

the remnant of the process is a pressure-less “tachyon dust”, whose nature was studied

in [18, 25] and characterized there as somewhat mysterious. The main issue addressed was

if the open string description in terms of tachyon dust can be reformulated in terms of a

closed string description. If it would turn out that the closed string component of the decay

can’t account for all the energy available in the D-brane before its decay than a ”missing

energy” puzzle would emerge. It would not be clear what type of matter constitutes the

reminder of the decay products of the D-brane. The formulation of the question is actually

more involved. In the tree-level approximation the mass of the decaying D-brane is infinite.

If the tree-level approximation for the energy deposited in closed strings is finite and does

not depend on gs (uv finite) then a puzzle emerges, because the first estimate of the finite

energy density of the brane would be that it is of order 1/gs.

In this paper we examine the ”missing energy” issue in the circumstances where that

phase space is minimized, that is the case of AdS3 where the actual entropy is not Hagedorn

like but only field-theoretic. We mainly consider the decay of an unstable D0-brane in this

background. As the amount of closed string radiation is also proportional to the phase space

available for the closed strings, one may expect this case to be a most severe challenge to

the open string completeness conjecture of Sen [26], which states that the open string field

theory description of the tachyon decay (approximated by the tachyon effective action)

captures all the physics of the decay process, in particular that it gives a “holographically

dual” description of closed string radiation, even when closed string perturbation theory

breaks down. We find that in fact the outcome of the computation will be qualitatively

similar to brane decay in flat space-time. In the tree approximation the energy stored in
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the closed strings is much too high and one must identify a mechanism to decrease the

amount of energy carried by the closed strings. The open string picture on the other hand

remains rather simple.

String theory in AdS3 with ns-ns fluxes is described by the (universal cover of the)

SL(2, R) wzw model [27]; it is a solvable conformal field theory. The study of the associated

boundary conformal field theory allowed to construct several types of SL(2, R)-preserving

and symmetry-breaking D-branes, first in the related Euclidean H+
3 model [28, 29] and

then in the case of AdS3 with Lorentzian signature [30]. Among the symmetry-breaking

D-branes is a D-particle sitting at the origin of global coordinates [31]. In this work we

consider the non-bps D0-brane in type iib superstrings on AdS3× S3× T4 built out of it.

We study its spectrum of fluctuations (open string modes) that contains a tachyon.

The presence of this open string tachyon, and the particular structure of the boundary

state associated with this D-particle, allows one to find the exact boundary state describing

the time-dependent development of this instability. The boundary deformation that is

turned on has the form (in the bosonic case)
∮
∂Σ d` exp(X0(`)/

√
α′), i.e. the same as one

would obtain for an unstable D-brane in flat space-time, although the boundary state is

different.

There are two (related) important differences though between the flat space-time case

and the current analysis in AdS. First, the scaling of space-time energy with the oscillator

number of the string is quite different (i.e. EAdS ∼ N vs. Eflat ∼
√

N), meaning that the

number of string states for a given energy is smaller. As a consequence, one may envisage

that the production of very excited closed strings could be highly suppressed relative to

flat space-time.

A second striking difference with the rolling tachyon in flat space-time is the existence

of “long strings”, i.e. macroscopic circular strings whose radius grows linearly w.r.t. AdS

global time, while having a finite energy because their (infinite) mass is balanced by the

coupling to the ns-ns two-form [32, 33]. We find that they are copiously produced by the

brane decay, in such a way that an unrestricted sum over the winding sectors would give a

divergent energy for the closed string radiation. This is obtained by computing the annulus

amplitude for the rolling tachyon boundary state, whose imaginary part gives the mean

number of emitted closed strings [34].

Non-perturbative physics does provide a cutoff on the magnitude of the winding num-

ber w (which has to be smaller than the number of background fundamental strings) which

manages to regularize both the mean number of emitted closed strings and all moments of

the emitted energy. However it is not stringent enough to give a correct estimate of the

radiated energy. The finite energy obtained is of order 1/g2
s while the total energy stored

in the brane is only of order 1/gs. This finite result consists of important contributions of

long string states whose energy is larger than 1/gs. Such contributions, although finite, are

outside the realm of a reliable perturbative computations. As the energy stored in closed

strings is larger than the available energy one should try to understand how the actual

amount of energy is of order 1/gs. If for some reason only closed strings with energies

smaller than 1/gs, i.e. strings whose energy we can reliably calculate, would contribute sig-

nificantly to the computation of the mean radiated energy, a fully satisfactory result would
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be obtained.

Another way to regularize the high-energy divergence of closed strings radiation that

was advocated in the past is to consider non-critical string theories [34]. Such string

backgrounds have a higher Hagedorn temperature compared to critical strings in flat space-

time, therefore their ultraviolet behavior is somewhat softer. Previous experience suggests

that anti-de Sitter space-time is the best possible regulator because its density of states is

the same as that of a field theory. Therefore we do not expect closed string emission by a

D-brane decay in linear dilaton backgrounds to be more suppressed at high energies than

in AdS. Analyzing some examples of rolling tachyon in non-critical superstrings we show

that closed string emission, computed at tree level, is plagued with the same divergences.

Thus in both examples, AdS and linear dilaton, string theory manages cleverly to dissipate

all the energy stored in the brane.

We compute the rate of open string pair creation [19] by the rolling tachyon in AdS3.

We show that it is exponentially suppressed at high energies. Therefore perturbative string

theory provides a valid description of the open string side of the process. These results

are in agreement with Sen’s hypothesis. The effective open string description in flat space-

time and AdS3 share some similarities; the tachyon effective action – which has the same

domain of validity as in flat space-time if we choose the radius of AdS to be large w.r.t. the

string length – predicts similar dynamics. However, the worldsheet cft description shows

that while in the former case the mean number of emitted open strings is only power-like

decreasing at high energies, in the latter example the convergence is exponential-like. The

closed string side of the story seems very different. Instead of a “dust” of non-relativistic

massive closed strings, one gets a ”ring” of long strings with very large winding number

expanding at a common constant speed.

A different route to time-dependence in string theory is to use the holographic dualities

between gravitation and gauge theory, whose hallmark is the AdS/cft correspondence [35].

For instance the decay of an unstable sphaleron in the gauge theory has been considered

in [36], after the proper AdS5/ cft4 identification of the static configuration has been

found in [37]. However the field theory computations were compared to the flat space

rolling tachyon solution for lack of knowledge of the AdS5× S5 worldsheet theory. The

example studied in this paper, D-particle decay in AdS3, is a very close analogue of this

setup with the advantage of having a better control on the AdS side of the correspondence.

By analogy with the AdS5× S5 example we expect that the D-particle in AdS3 is dual

to a sort of sphaleron of the space-time cft associated with the instanton dual to the

D-instanton in anti de-Sitter. However the space-time cft is notoriously hard to study

because it is singular in the regime where the bulk theory is solvable, i.e. without Ramond-

Ramond fluxes. We leave as an open problem the precise description of the D0-brane dual

in the space-time theory. This would help to understand the physics of the decay at a

non-perturbative level, in particular to understand better the regularization of long strings

production.

The production of long strings is one of the features that render the holographic inter-

pretation complicated, because it decreases the central charge of the space-time conformal

field theory. The latter is the product of two cfts (one free and one interacting), the
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interacting one having a central charge proportional to Q1, the number of fundamental

strings that build the AdS3 background. The long strings emission by the D0-brane de-

cay decreases their number. We expect eventually that after non-perturbative effects are

taken into account, in order that the energy released into closed strings radiation is of the

order of the D0-brane mass, δc/c = δQ1/Q1 will be of order 1/
√

Q1. If the cutoff that we use

turns out to be appropriate, the relative variation of the central charge is very small in the

perturbative regime.

This paper is organized as follows. In section 2 we recall some aspects of string theory

in AdS3 and discuss the non-bps D-particle in AdS3× S3× T4. In section 3 we briefly

review the rolling tachyon in flat space-time and construct the rolling tachyon boundary

state in AdS3. Section 4 is devoted to the analysis of closed string emission in AdS3×S3×
T4. This is the main result of this work. We discuss also the emission of open strings. In

section 5 we make some comments on the holographic interpretation of the decay.

2. D-particles and D-instantons in AdS3× S3× T4

In this section we construct in detail the unstable D-particle in AdS3× S3× T4. The reader

interested mostly by the decay of the brane can move directly to section 3.

We will first set the stage with a short review of string theory on AdS3. Then we will

recall the construction of the D(-1)- and D0-branes in AdS3 at the microscopic boundary

cft level and embed the latter in the AdS3× S3× T4 type iib superstring background, the

example we will follow in the next sections.

2.1 Strings and D-branes in AdS3

String theory on AdS3, with an ns-ns 2-form flux, is described by the wzw model for (the

universal cover of) SL(2, R). In the following we will consider the supersymmetric wzw

model that is used to construct superstring theories. The corresponding background fields

for a supersymmetric affine ŝl(2, R) algebra1 at level k are:

ds2 = α′k
[
dρ2 + sinh2 ρdφ2 − cosh2 ρdt2

]

H = 2α′k cosh ρ sinh ρ dρ ∧ dφ ∧ dt , (2.1)

using the global coordinates. The dilaton field is a constant that we choose such that the

string coupling gs = exp Φ is small, in order to justify worldsheet cft techniques. The

central charge of this superconformal theory is c = 9/2 + 6/k.

The closed string spectrum splits into standard ŝl(2, R) representations (w = 0) and

twisted ones (w 6= 0) obtained by an outer automorphism called spectral flow [38, 33]. The

weights of the primaries read, in the ns sector:

L0 = −j(j − 1)

k
− wm +

k

4
w2 , L̄0 = −j(j − 1)

k
− wm̄ +

k

4
w2 , (2.2)

where (m, m̄) label primaries of the û1 elliptic compact sub-algebra (J3, J̄3). Space-time

energy is given by E = m + m̄ whereas the angular momentum (conjugate to φ) is n =

1Containing a purely bosonic bsl(2, R) algebra at level k + 2.
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m − m̄. The sl(2, R) representations appearing in the unitary closed string spectrum fall

into two classes. The discrete representations with [33]

1

2
< j <

k + 1

2
(2.3)

are related to string worldsheets trapped inside AdS3, corresponding to classical solutions

obtained by spectral flow of time-like geodesics. The continuous representations with

j = 1
2 + iP , P ∈ R+ are related to closed strings whose wave-functions are delta-function

normalizable. They correspond to circular long string solutions growing linearly w.r.t.

global time, with asymptotic winding number w, obtained by the spectral flow of space-

like geodesics.

It is convenient for many computations to decompose the wzw model in terms of the

coset SL(2, R)/U(1), the Euclidean 2D black hole [12, 39, 40], and a time-like boson:

SL(2, R)k ∼ SL(2, R)/U(1)|k × U(1)−k

Z
, (2.4)

We refer the reader to appendix A and to [30] for more algebraic details.

Localized D-branes in AdS3. As in any wzw model, the symmetric D-branes in

SL(2, R) are defined by the gluing conditions for the currents of the affine algebra, which

includes a possible twist by an (outer) automorphism of the algebra preserving the gluing

condition for the (N = 1 super-)conformal algebra [41].

The D-instanton that we will be interested in is given by the trivial gluing conditions

(in the open string channel) [42]:

J3(z) = J̄3(z̄)|z=z̄ , J±(z) = J̄±(z̄)|z=z̄ . (2.5)

It corresponds to a point-like object in AdS3 space-time, localized at ρ = t = 0 in global

coordinates. The exact construction of the boundary state in Lorentzian AdS3 [30] follows

from the same logic that we discussed above, starting with the D-branes in SL(2, R)/U(1)

[43 – 46] that can be obtained either from the gauging of H+
3 [28], the Euclidean contin-

uation of AdS3 or using the conformal bootstrap of the N = 2 superconformal algebra

with c > 3 [47, 48]. The one-point function for an ns-ns primary field V j
mm̄w(z, z̄) in the

presence of this localized ”S-brane” reads [30]:

〈V j
mm̄w(z, z̄)〉 =

1

|z − z̄|2∆jmw

2iπ

(2k)3/4
ν

1/2−j
k

Γ(j + m − kw
2 )Γ(j − m + kw

2 )

Γ(2j − 1)Γ(1 + 2j−1
k )

δm−m̄,0 , (2.6)

where νk = Γ(1 − 1/k)/Γ(1 + 1/k) and ∆jmw is the conformal dimension of the primary

as given by eq. (2.2). It contains couplings to closed strings both in the continuous and

discrete representations. The former are obtained by evaluating (2.6) for j ∈ 1/2 + iR+,

while the latter are the residues at the poles of the one-point function for real j. In the

semi-classical regime k → ∞, these couplings can be found by applying the distribution

δ(ρ)δ(t) to the (delta-function) normalizable wave-functions on AdS3, as in [43] for the

coset model.
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The open string annulus amplitude is obtained by closed/open channel duality using

this one-point function2 Still concentrating only on the ns sector, we get in Lorentzian

space-time the identity representation of SL(2, R)3 (with q = exp 2iπτ):4

Z(τ) =
∑

r∈Z

chI

[
0

0

]
(r; τ)

q−
r2

k

η(τ)

(
ϑ
[
0
0

]
(τ)

η(τ)

)1/2

, (2.7)

that we decomposed in terms of U(1) characters and the “string functions” chI

[
0
0

]
(r; τ) of

the super-coset SL(2, R)/U(1) for the identity representation. To get a proper interpreta-

tion of this brane as a D-instanton one should consider an Euclidean target space instead,

i.e. Wick rotate AdS3 to H+
3 . We would like also to stress that, unlike in the closed string

sector, the identity representation – containing in particular the vacuum state – is present

in this sector of open strings attached to a localized brane.

Using the coset decomposition (2.4) one can construct symmetry-breaking D-branes [50]

associated with the same boundary conditions in the SL(2, R)/U(1) coset. It boils down to

replacing Dirichlet boundary conditions by Neumann ones for the time-like boson, changing

appropriately the overall normalization of the boundary state to satisfy the Cardy condition

(i.e. such that the identity appears in the open string spectrum with coefficient one). This

D-brane is interpreted geometrically as a D-particle sitting at the origin of AdS3 [31]. The

associated one-point function for an ns-ns primary is [30]:5

〈V j
mm̄w〉 = iπ

(
2

k

)1/4

ν
1/2−j
k

Γ(j + kw
2 )Γ(j − kw

2 )

Γ(2j − 1)Γ(1 + 2j−1
k )

δm−m̄,0 δ(m + m̄) . (2.8)

The Kronecker delta δm−m̄,0 comes from the boundary conditions in SL(2, R)/U(1), while

the Dirac delta-function δ(m + m̄) corresponds to the Neumann boundary conditions for

the free boson (and is related to the time-translation symmetry preserved by the brane).

The only solution of these antagonistic constraints is m = m̄ = 0. Using again closed/open

channel duality it gives the open string partition function as follows:

Z = V1

∑

r∈Z

chI

[
0

0

]
(r; τ)

∫
dE

2π

q
−E2

k

η

(
ϑ
[0
0

]
(τ)

η(τ)

)1/2

, (2.9)

where V1 ≡ 2πδ(0) is the ”volume” of the time direction. This open string spectrum

looks similar to what we would obtain in a background containing SL(2, R)/U(1) × R0,1,

for instance a non-critical superstring (the divergence coming from the integration over

2Details about this standard bcft computation can be found e.g. in the lecture notes [49], section 3.
3On the single cover of SL(2, R) the open string spectrum contains also spectral flowed representations

associated with open strings winding around the periodic time direction. This observation allows to check

that on the universal cover of SL(2, R), the boundary state corresponds to only one copy of the D-instanton

and not an array of them along the Euclidean time direction.
4The fermionic characters are written using the theta-function ϑ

ˆ
a
b

˜
(τ ) =

P
n∈Z

q
1

2
(n+a/2)2eiπ(n+a/2)b

where a, b ∈ Z2 label the different spin structures. a = 0 (resp. a = 1) corresponds to the Neveu-Schwarz

(resp. Ramond) sector. The b = 1 sectors have a (−)F insertion in the trace.
5In the following we will not write explicitly the (z, z̄) dependence of the one-point functions any more.
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space-time energy E has to be regularized as in this flat space-time). We will see below

that for the rolling tachyon bcft describing its decay the SL(2, R)/U(1) and time-like U(1)

open string sectors are not decoupled anymore, since closed string primaries with m 6= 0

contribute to the annulus amplitude.

2.2 The non-BPS D-particle in AdS3× S3× T4

We consider now the full type iib superstring theory on AdS3× S3× T4 with ns-ns fluxes.

It can be obtained as the near-horizon geometry for a collection of k coincident NS5-branes

and Q1 fundamental strings smeared on the four-torus [51]. The level of the SL(2, R)

algebra is k (corresponding to anti-de Sitter space-time of radius
√

α′k), while the six-

dimensional string coupling constant is fixed in the near-horizon limit to

g6 =
gs√
v4

=

√
k

Q1
, (2.10)

where v4 is the T4 volume in strings units. We will take this solution as a concrete example

to embed the non-bps D-particle, and later the associated rolling tachyon, in a superstring

background.

Besides the AdS3 factor, the three-sphere with ns-ns flux is described as an SU(2)

super-wzw model at level k. An important point is that, since this curved background is

made only of wzw models, the worldsheet fermions are free even though the background

is non-trivial. The space-time supercharges are then constructed exactly as in flat space

using the associated spin fields [52], with however the extra condition γ012345ζl,r = ζl,r on

the two ten-dimensional spinors, giving overall 16 supercharges [53].

We wish now to consider D-branes in this superstring theory, more specifically to em-

bed the AdS3 D0-brane discussed above. For the SU(2) part we choose the “elementary”

boundary state associated to the identity representation, i.e. the S2 brane of minimal vol-

ume that is viewed as a point on S3 in the semi-classical limit. Other choices, corresponding

to “large” two spheres, can be viewed as bound states of these elementary branes [54]. In

order to simplify the notation we take an orthogonal torus. We denote by Ri, i = 1, . . . , 4

the radii of the circles.

There are two reasons for the D0-brane not to be bps. First, a D0-brane in type iib

has the wrong dimensionality to be supersymmetric, as it doesn’t couple to the r-r sector.

Second, even in type iia, this brane would be non-supersymmetric because it breaks the

SL(2, R) symmetry which prevents from decoupling the worldsheet fermions and writing

the space-time supercharges with spin fields, as was done in [53] for the closed string sector.

It is also not possible to use a Gepner-like construction [55] because the R-charges of the

N = 2 worldsheet superconformal algebra associated with the SL(2, R)/U(1) coset are not

integral. One can check that this D0-brane of type iia, although non-bps, is stable (i.e.

the open string sector does not contain tachyons).

Let’s come back to the non-bps D0-particle in type iib superstrings on AdS3× S3×

– 8 –
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T4. Its open string partition function reads :

Z(τ) =
∑

a∈Z2

(−)a
∑

{wi}∈Z4

q
(Riwi)2

α′

η3(τ)

∑

r∈Z

chI

[
a

0

]
(r; τ)

∫
dE

2π
q−

E2

k χ0(τ)
ϑ
[a
0

]3
(τ)

η3(τ)
. (2.11)

where χ0(τ) is the ŝu(2) character of the trivial representation. The ns and r sectors

correspond to a = 0 and a = 1 respectively. Let us now study open string tachyonic modes

on this D-particle, since we will be ultimately interested in finding the time-dependent

solutions associated with rolling down these negative directions of the potential in the open

string field theory. By taking the identity in the trivial representation for the SL(2, R)/U(1)

factor (r = 0) as well as for SU(2) we find a tachyon similar to the one that appears on a non-

bps D-brane in flat space-time, with mass squared m2
tach = −1/2α′ (using flat space-time

normalization). If we choose the D-particle to be point-like on the three-sphere, there are

no other tachyonic modes provided the compactification torus is large enough. For branes

wrapping a non-vanishing S2, associated with an SU(2) representation of spin ̂, there are

extra negative modes of mass squared m2
tach = −1/2α′ + ̃(̃+1)/α′k if ̃ ∈ {1, 2, . . . , 2̂ } is

small enough. They correspond to inhomogeneous decay on their two-sphere worldvolume.

However the rolling tachyon bcft is more complicated since the boundary deformation

involves a non-trivial boundary operator in the SU(2) sector. In the following we will

concentrate on point-like D-particles with ̂ = 0.

3. The rolling tachyon boundary state in AdS3

Having constructed the non-bps D-brane of interest in the AdS3× S3× T4 type iib super-

string background, and having found its tachyonic modes, we will now study the boundary

state corresponding to the decay of this D-particle towards the minimum of the tachyon po-

tential, the closed string vacuum. We will first review some aspects of the rolling tachyon

boundary conformal field theory in flat space-time, then apply these techniques to the

anti-de Sitter case.

3.1 Rolling tachyon in flat space-time: short review

The rolling tachyon is an exact solution of the boundary worldsheet cft describing the

decay of an unstable D-brane [18]. For simplicity we discuss first the bosonic string. It

comes in two versions corresponding to the boundary marginal deformations:

δSfull = λ

∮

∂Σ
d` cosh (X0(`)/

√
α′) (3.1a)

δShalf =
λ̃

2

∮

∂Σ
d` e

X0(`)/
√

α′
(3.1b)

The first one describes a time-dependent process in which incoming radiation conspires

– involving a considerable fine-tuning – to create a non-bps D-brane at x0 = 0 that will

eventually decay back to the closed string vacuum. The second one corresponds to the

decay of a non-bps D-brane prepared at past infinity x0 → −∞. The parameter λ̃ is not
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important in this case since it can be absorbed by a time translation. In both cases the

decay is homogeneous along the D-brane longitudinal directions.

As always in string theory, in order to study this worldsheet cft corresponding to a

time-dependent process in spacetime we need to use an analytic continuation that is not

uniquely defined. It turns out in this case that the rolling tachyon bcft can be obtained

from two rather different types of Euclidean models. The first one, which is more naturally

related to the “full S-brane” solution (3.1a), is the boundary sine-Gordon theory [56 – 59].

It consists in a c = 1 free theory of a space-like boson, with the boundary deformation

λ
∮
∂Σ d` cos X(`)/

√
α′. The construction of the boundary state uses as a basis of Ishibashi

states the higher order Virasoro primaries that occur for dimensions ∆ ∈ (Z)2/4 and the

underlying ŝu(2)1 symmetry of the model. The Lorentzian theory does not have such

primaries (because all the Virasoro representations except the identity are non-degenerate)

and such a symmetry, therefore the Wick rotation is quite intricate. Some components

of the boundary state obtained this way grow exponentially with time [60] but do not

correspond to on-shell physical closed string states. Even though they have been interpreted

as conserved charges in the of two-dimensional strings context [61] their interpretation in

critical strings and their physical relevance is unclear.

The other route to the rolling tachyon is a particular limit of Liouville theory [19]

involving two analytic continuations. Liouville theory has a central charge c = 1 + 6(b +

b−1)2 > 25 and to get a c = 1 theory one should consider the analytic continuation b → i. In

this limit the Liouville potential ceases to be a wall and become periodic.6 For the boundary

cft that we consider, namely Liouville theory with boundary conditions corresponding to

an extended D-brane (called fzzt brane [64, 65]) we take the limit of vanishing Liouville

potential, while keeping fixed the boundary cosmological constant λ̃. The other analytic

continuation corresponds to Wick-rotating the Liouville field φ → iX0 to get a time-like

boson; it gives then the “half-S-brane” solution (3.1b). However the bcft data, excepting

the one-point function, is not analytic in the Liouville momentum for b ∈ iR [62, 66].

The one-point function for the fzzt-brane in time-like Liouville theory with c = 1 and

vanishing bulk cosmological constant reads [19]:

〈eik0X0〉 =
1√
2π

(
πλ̃

)−i
√

α′k0 π

sinhπ
√

α′k0

. (3.2)

This is what we will consider in the following as defining the coupling between the rolling

tachyon (3.1b) and closed strings.7

The extension of the above results to the superstring case is rather straightforward,

applying the same manipulations N = 1 super-Liouville theory with a boundary. The

6As shown in [62] this unitary cft is identical to the c → 1 limit of Virasoro minimal models studied

in [63].
7There is a complication arising for k0 = 0, which is a simple pole of the one-point function, re-

lated to the fact that the identity representation is degenerate. It splits into infinitely many Virasoro

ireps labeled by J ∈ Z>0, whose highest weight state |J, 0, 0〉, of dimension J2, is a polynomial in X0

derivatives O(∂X0, ∂2X0, ∂̄X0, ∂̄2X0, . . .). A more correct definition of the boundary state would be

|B〉 =
p

π/2P
R

dk0 (πλ̃)−i
√

α′k0 sinh−1(π
√

α′k0)|k0〉〉 +
P∞

J=0 |J, 0, 0〉〉.
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boundary deformation associated with the rolling tachyon now reads [67]:

δS =
λ̃

2

∮

∂Σ
d` ψ0eX0/

√
2α′

σ1 (3.3)

where σ1 is a Chan-Patton factor coming from a fermionic zero mode on the worldsheet

boundary. It is studied by analytic continuation of the super-fzzt D-brane [68, 69]. Then

the one-point function for an ns-ns primary in the presence of this boundary deformation

is similar to the bosonic strings result (3.2): 8

〈eik0X0〉 =
1√
2π

(
πλ̃

2

)−i
√

2α′k0
π

sinh π
√

α′

2 k0

. (3.4)

Operators in the r-r sector of the closed superstring theory get non-zero one-point

functions once the rolling tachyon perturbation is turned on. More explicitly, we consider

the spin fields σε, with ε = ±1, creating the two Ramond ground states for ψ0, the world-

sheet fermionic super-partner of X0. The one-point function in the r-r sector depends on

the two possible gluing conditions for the N = 1 supercurrent on the real axis:

G(z) = ξ G̃(z̄)|z=z̄ , ξ = ±1 . (3.5)

For both signs, the one-point function for the super-fzzt-brane in time-like super-Liouville

theory with c = 3/2 and vanishing bulk cosmological constant reads:

〈eik0X0(z,z̄)σε(z)σ̃ε̄(z̄)〉 =
ε

ξ+1
2√
2π

(
πλ̃

2

)−i
√

2α′k0
π

cosh π
√

α′

2 k0

δε,ε̄ . (3.6)

Recall that a non-bps D-brane with constant open string tachyon profile does not couple

to the r-r fields. In the effective action the couplings between the tachyon field and the

r-r forms are derivative.

3.2 D0-brane decay in AdS3

We have now prepared the ground to construct the boundary state of the rolling tachyon in

AdS3. We follow the approach based on time-like Liouville theory that we reviewed above.

Let us first recall that we showed in the previous section that the unstable D0-brane in

type iib superstring theory on AdS3× S3×T4 contains on its worldvolume an open string

tachyon built with the identity of the SL(2, R)/U(1) super-coset. Therefore one can turn on

the same boundary deformation (3.3) that was discussed above in flat-space-time, built with

the identity of the SL(2, R)/U(1) conformal field theory. According to the general analysis

of boundary deformations performed in [58], this deformation of the AdS3 superstring is

exactly marginal, therefore it gives an exact rolling tachyon solution of the open string

field theory. Moreover we shall see below that the one-point function giving the coupling

8See [70] for another derivation of this result using free field correlators.
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between closed string modes and the rolling tachyon can be computed exactly. To simplify

the equations we will consider till the end of this section only the SL(2, R) part of the

one-point functions. In the full AdS3× S3×T4 background the one-point function will be

the product of the SL(2, R) piece with the SU(2)×U(1)4 piece which is standard, together

with the appropriate gso projection.

As reviewed in more detail in appendix A, the primary states in the Minkowskian

SL(2, R) theory – characterized by their SL(2, R) spin j, the eigenvalues (m, m̄) of the

elliptic sub-algebras J3
0 and J̄3

0 and the spectral flow sector w – are defined as primary

states in the “T-dual” theory SL(2, R)/U(1) × R0,1. For ns-ns primaries we have the

decomposition:

V j ,sl2
mm̄w = V

j ,sl2/u1

m− kw
2

; −m̄+ kw
2

e
i
q

2
k [mX0(z)+m̄X̃0(z̄)] (3.7)

where X0(z, z̄) is a canonically normalized free time-like boson (with α′ = 2). To deal with

the r-r sector it is convenient to bosonize the fermionic superpartners of the currents J±

and J̄± as 2i∂H1 = ψ+ψ− and 2i∂̄H̃1 = ψ̃+ψ̃−. Then we have the following decomposition:

V j ,sl2
mm̄we

i
2
(sH1+s̄H̃1)σε,ε̄ = V

j ,sl2/u1 (s,s̄)

m− kw
2

; −m̄+ kw
2

e
i
q

2
k [mX0(z)+m̄X̃0(z̄)]σε,ε̄ . (3.8)

with s, s̄ = ±1. The one-point function for a D-particle, in the presence of the boundary

deformation (3.3), can be obtained as follows. First, due to the decomposition (3.7) of

SL(2, R) vertex operators into an SL(2, R)/U(1) piece and a free boson piece, the contribu-

tion to the rolling tachyon one-point function from the SL(2, R)/U(1) vertex operator will

be the same as its contribution to the D(-1)-brane, see eq. (2.6), up to the overall normal-

ization factor. Indeed the boundary deformation (3.3) corresponding to the rolling tachyon

is built with the identity operator of SL(2, R)/U(1) cft and therefore cannot change the

SL(2, R)/U(1) contribution to the coefficients of the boundary state.

Second, the contribution from the time-like boson is identical, for a given value of the

spacetime energy, to the one-point function for the rolling tachyon in flat space-time (3.2).

Indeed this is a free boson, in the sense that, expanding an ŝl(2, R) highest weight module in

terms of the horizontal Cartan subalgebra J3
0 , for a given value of m the sub-module splits

into an ŝl(2, R)/û1 highest weight module and a free û1 one. Moreover the SL(2, R)/U(1)

contribution to the one-point function is analytic in m so one can choose imaginary values

corresponding to “resonances” for which the Liouville couplings are given by free field

computations.

Assembling everything together we get the one-point function in the presence of the

decaying D-particle in AdS3. It leaves a freedom for the overall normalization of the one-

point function, that we fixed by an analogue of the Cardy condition.9 Explicitly, we get

first the one-point function for an ns-ns primary as follows:

〈V j ,sl2
E/2 E/2 w〉 =

π

(2k)3/4
ν

1/2−j
k

Γ
(
j + kw−E

2

)
Γ

(
j − kw−E

2

)

Γ(2j − 1)Γ(1 + 2j−1
k )

(
πλ̃
2

)−i
q

2
k
E

sinh πE√
2k

. (3.9)

9One requires that the annulus amplitude in the open string channel has a normalization compatible

with the regularized density of open string states [65].
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This is one of the main results of the paper, that we will use in the following to study

the physics of the decay. Compared to the static D0-brane one-point function, eq. (2.8),

there is no constraint δ(E) because the brane is time-dependent. Single closed string states

with angular momentum (i.e. m− m̄ 6= 0) don’t couple to the D0-brane, because the latter

carries no angular momentum in its rest frame.

One can find the profile of the closed string wave-function for the brane by inverse

Fourier transform in the sector w = 0, using a basis of (delta-function)-normalizable func-

tions on the SL(2, R) group manifold, i.e. matrix elements in discrete and continuous rep-

resentations. The one-point function (3.9) is the product of the one-point function for a

D(-1) instanton and for the rolling tachyon in flat space-time; therefore the profile is ob-

tained by the convoluted product of these two. In the semi-classical limit, i.e. neglecting

the factor Γ(1+ 2j−1/k) and removing the upper bound (2.3) on j, the Fourier transform of

the D(−1) coupling is proportional to δ(ρ)δ(t). We find that the spacetime profile of the

rolling tachyon in the semi-classical limit is

Ψ(ρ, t, φ) ∝ δ(ρ)

1 + (πλ̃
2 )2e

√
2k t

. (3.10)

It describes the decay of an unstable D-particle sitting at the center of AdS3, prepared

at past infinity t → −∞ in global time. We will use later the same one-point function to

compute the emission of closed strings coupling to this time-dependent brane.

Let us now move to the r-r sector. With the conventions set above, see eq. (3.8),

the one-point function for a r-r primary of SL(2, R) in the presence of the rolling tachyon

reads:

〈V j ,sl2
E/2 E/2 we

i
2
(sH1+s̄H̃1)σε,ε̄〉 = ε

ξ+1
2 e−

iπsŝ
2

π

(2k)3/4
ν

1/2−j
k ×

×Γ
(
j + kw−E+s

2

)
Γ

(
j− kw−E−̄s

2

)

Γ(2j−1)Γ(1+ 2j−1
k )

(
πλ̃
2

)−i
q

2
k
E

cosh πE√
2k

δs,−s̄δε,ε̄ (3.11)

with a parameter ŝ ∈ Z4 such that ŝ is even for ξ = 1 and odd otherwise. In the full

supersymmetric type iib background the boundary state is a linear combination of the

ξ = 1 and ξ = −1 boundary states in the ns-ns and r-r sectors in the usual way compatible

with the closed string gso projection [71].

We recall that this one-point function contains both couplings to the discrete repre-

sentations (the residues of the simple poles on the real axis in the j-plane) and couplings

to the continuous representations with j = 1
2 + iP . Therefore one of the most prominent

features of the the decay of this D-brane is that it produces long strings that “escape” to

space-like infinity. In the following section we will make this more precise and compute the

emission of closed strings as the imaginary part of the annulus amplitude.

Conserved energy. The conserved energy of the rolling tachyon can be found from the

“conservation law” for the boundary state:

(QB + Q̄B)|B〉 = 0 , (3.12)
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in order to satisfy the closed string field theory equations of motion; QB and Q̄B are the

left and right contribution to the brst charge. We refer the reader to the review [15] for

more details and references. The expansion of the boundary state for the rolling tachyon

in an AdS3 ×M bosonic string background at level k contains the terms

|B〉 ∝
∫

dj ν
1/2−j
k−2

∑

w

∫
dE

Γ
(
j + kw−E

2

)
Γ

(
j − kw−E

2

)

Γ(2j − 1)Γ(1 + 2j−1
k−2 )

(
π(πλ)

− iE√
k

sinh πE√
k

+
2

k

[

4πδ(E/
√

k) − π(πλ)
− iE√

k

sinh πE√
k

]

J3
−1J̄

3
−1 + · · ·

)

|j E/2 E/2 w〉〉

⊗ |B〉M ⊗ (1 − b̃−1c−1 − b−1c̃−1 + · · · )(c0 + c̄0)c1c̄1|0〉gh , (3.13)

with contributions both from the continuous and discrete representations of sl(2, R). Isolat-

ing the component proportional to (c̃−1J
3
−1+c−1J̄

3
−1) in (3.12) we find the conserved energy

associated with the rolling tachyon in AdS3, expressed in momentum space as follows:

T00(j, w) ∝ 1

gs
ν

1/2−j
k−2

Γ
(
j + kw

2

)
Γ

(
j − kw

2

)

Γ(2j − 1)Γ(1 + 2j−1
k−2 )

. (3.14)

Because the brane is point-like the stress-energy tensor has no components longitudinal to

the brane worldvolume. We did not calculate the components transverse to the brane, that

vanish in flat space-time.

One can find the tachyon energy profile in space-time by inverse Fourier transform in

the sector w = 0. It is identical (up to a normalization constant) to the wave-function

corresponding to the D-particle in AdS3. In the semi-classical limit, we find T00(ρ, φ) ∝
g−1
s δ(ρ), so the tachyon energy density is sharply localized and constant in global time.

For finite k the energy profile is smeared along the radial direction ρ on a scale of order√
α′/k.

3.3 Rolling tachyon in AdS3 from an orbifold construction

The coefficients of the boundary state for the rolling tachyon in AdS3 – or, in other words,

the one-point function – can be obtained alternatively using an orbifold construction. This

approach will prove later to be useful to analyze the open string sector of the theory. We

start with a slightly unusual T-dual representation of string theory on AdS3 as the orbifold

AdS3 ∼ SL(2, R)/U(1)v∞ × R0,1

Z
. (3.15)

The first factor in this decomposition is the vector coset SL(2, R)/U(1) of the univer-

sal cover of SL(2, R), i.e. the universal cover of the ”trumpet” geometry.10 The lat-

ter has a metric ds2 = dρ2 + cotanh2(ρ/
√

2k)dx2 with x non-compact. In the coordinates

ds2 = 2k dzdz̄/(zz̄ − 1), one sees that it is conformal to the infinite cover of the exterior

10It is T-dual to a Z orbifold of the ”cigar” [72], i.e. of the axial coset. Another representation of this

cft with a singular target space is the N = 2 Liouville theory with a momentum condensate, at infinite

radius [73].
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of the unit disc. The action of the Z translation orbifold on SL(2, R)/U(1)v∞ ×R0,1, giving

the AdS3 cft is

T : (x, t) −→ (x + 2π
√

2/k, t + 2π
√

2/k). (3.16)

Since it has no fixed points one can get the D-branes on AdS3 from the branes of the cft

SL(2, R)/U(1)v∞ × R0,1 by summing over the images under the orbifold action.

We start on the covering space of the orbifold with the tensor product of a D0-brane in

the trumpet and a Neumann brane along the time direction with the rolling tachyon bound-

ary deformation (3.3). The former is an A-type brane of the vector coset SL(2, R)/U(1)

which is in some sense localized on the boundary of the disc, in the strong coupling re-

gion, in close analogy with the minimal lenght D1-branes of SU(2)/U(1) stretched between

adjacent ”special points” on the boundary of the disc [50]. It carries a label r0 giving its

quantized position, with r0 ∈ Z for the universal cover of the manifold,11 with a coupling

to the x-momentum of the coset (that we parameterize as px = µ
√

2/k) in the one-point

function of the form exp(4iπµr0/k).

We now construct the boundary state in the orbifold theory by summing over the

images. The action of the translation generator T on the labels of the brane is:

T : r0 −→ r0 + 1 , λ̃ −→ λ̃e
π

q

2
k . (3.17)

The transformation of the boundary cosmological constant λ̃ follows from the action of the

translation (3.16) on the boundary action (3.3). We get the following boundary state (for

the ns-ns sector):

|B〉〉 =
1

kπ

∑

h∈Z

∫
dj dµ ν

1/2−j
k

Γ(j + µ)Γ(j − µ)

Γ(2j − 1)Γ(1 + 2j−1
k )

e
4iπµh

k ×

× 1√
2kπ

∫
dE

2π

(
πλ̃

2
e
π

q

2
k
h

)−i
q

2
k
E

π

sinh πE√
2k

|j, µ, µ〉〉 ⊗ |E〉〉

(3.18)

where |j, µ, µ〉〉 and |E〉〉 are respectively the Ishibashi states for the SL(2, R)/U(1) vector

super-coset with type A boundary conditions and for the time-like direction (with the

same normalization ∆ = −E2/4k as in AdS3). Now performing the sum over h (i.e. over

the images under the orbifold action) one finds a boundary state whose coefficients are

identical, up to an overall normalization, to the one-point function (3.9) for the rolling

tachyon in AdS3.

4. Closed and open string emission by the rolling tachyon

The physics of the rolling tachyon is, from the closed strings point of view, the decay of an

unstable, very massive particle, producing radiation of closed strings composed of all the

11For the single cover of the trumpet r0 ∈ Zk. It reflects the momentum non-conservation in the trumpet,

T-dual to the winding non-conservation in the cigar.
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string modes coupling to the brane. As recalled in the introduction the average number

of closed strings emitted by the D0-brane decay in flat space-time, computed in the tree-

level approximation, is divergent [23]. This is the detailed outcome of the competition

between the exponential suppression of the emission probability at high energy, and the

exponential growth of the density of string modes. Physically, because the initial energy is

finite and equal to the mass of the D-particle of order 1/
√

α′gs, one must impose a cutoff at

the corresponding energy, which is exactly the value for which non-perturbative effects kick

in. Then one concludes that the preferred decay channels are non-relativistic very massive

excited closed strings. The decay of higher dimensional branes produces a “tachyon dust”

of pressure-less fluid.

In AdS3 we may expect a different picture, as the density of states at high energy

behaves like a field theory (because string theory in AdS3 is dual to a two-dimensional

conformal field theory). We show below that ”long strings” play a prominent role in the

closed strings description of the decay. We identify non-perturbative effects that do reg-

ularize ultraviolet divergences and give finite physical quantities resulting from the decay.

This however does not challenge Sen’s conjecture [26] since all the D0-brane energy is

converted into closed strings radiation, as will be explained in this section.

4.1 Annulus amplitude for the decaying D-particle

The mean number of emitted closed strings can be obtained from the imaginary part of the

annulus diagram, using an optical-like theorem and open/closed channel duality. We follow

closely the computation of [34], and the recent analysis of [74] that clarified the issue of the

analytic continuation. It gives also an analogue of the Cardy consistency condition [75, 65]

for the boundary state.

The annulus amplitude in the closed string channel, computed from the one-point

function, gets contributions both from the continuous and from the discrete representations.

For simplicity of the notations in the following manipulations we keep track only of the

continuous representations in the ns sector; one can check that the contributions of the

discrete representations and the r sector of the full superstring background are consistent

with the open string annulus amplitude (4.10) that we get at the end of the computation.

From the expression of the one-point function, see eq. (3.9), we obtain the closed string

channel integrand of the annulus amplitude, in the ns sector of continuous representations

as (with q̃ = exp 2iπτ̃ ):

Z(τ̃) =
iπ

2

√
2

k

∑

w∈Z

∫ ∞

−∞

dE

2π

∫ ∞

0
dP

sinh 2πP sinh 2πP
k

[cosh 2πP + cos π(E − kw)] sinh2 πE√
2k

×

× chc

[
0

0

](
P,

E − kw

2
; τ̃

)
q̃−

E2

4k

η(τ̃ )

(
ϑ
[0
0

]
(τ̃)

η(τ̃ )

)1/2

. (4.1)

To obtain a well-defined expression we should consider, as explained in detail in [74], the

Lorentzian cylinder with the appropriate ε-prescriptions, i.e. take the modular parameter

τ̃ = 1/t + iε, t ∈ R+ and regularize the integration over the energy using the prescription

E → E−ε̂ ≡ (1 − iε̂)E.
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To be able to modular transform to the open string channel we need to follow some

algebraic manipulations. We will extract at the end the imaginary part of the annulus

amplitude that can be interpreted as the closed string emission. The first step of the

computation is to disentangle the SL(2, R)/U(1) part and the U(1) part of the closed

strings channel amplitude. We rewrite (4.1) as follows

Z(τ̃) =
i

4

(
2

k

)3/2 ∑

w

∫
dµ dE

∫ ∞

0
dP

sinh 2πP sinh 2πP
k

[cosh 2πP + cos 2πµ] sinh2 πE√
2k

×

× chc

[
0

0

]
(P, µ; τ̃)

q̃−
E2
−ε̂
4k

η(τ̃ )
δ

(
2µ

k
+ w − E

k

)(
ϑ
[
0
0

]
(τ̃)

η(τ̃ )

)1/2

(4.2a)

=
i

4

(
2

k

)3/2 ∫
dµ

∑

r∈Z

∫ ∞

0
dP

sinh 2πP sinh 2πP
k

cosh 2πP + cos 2πµ
e−

4iπrµ
k chc

[
0

0

]
(P, µ; τ̃)×

×
∫

dE

sinh2 (πE/
√

2k)
e+ 2iπrE

k
q̃−

E2
−ε̂
4k

η(τ̃ )

(
ϑ
[0
0

]
(τ̃)

η(τ̃ )

)1/2

. (4.2b)

We recognize in the first line of (4.2b) the continuous part of the modular transformation

from the identity representation characters of SL(2, R)/U(1) [44, 47, 45] (with τ = −1/τ̃):

chI

[
0

0

]
(r; τ) =

4

k

{∫ ∞

0
dP

∫
dµ e−4iπ µr

k
sinh 2πP sinh 2πP

k

cosh 2πP + cos 2πµ
chc

[
0

0

]
(P, µ; τ̃ ) + discrete

}

(4.3)

where the second part term contains an integral over characters in the discrete represen-

tations of SL(2, R)/U(1) with spin in the range 1/2 < j < k+1/2. One can check that this

discrete part of the modular transform matches the contribution of the discrete represen-

tations to the closed string channel annulus amplitude that we get from residues at the

poles of the one-point function (3.9).

Then we have to deal with the U(1) part of (4.2b), i.e. the integral over space-time

energy. In terms of the open string channel modulus τ = t − iε (regularized by the ε

prescription), we get the modular transformation (with q = exp 2iπτ):

∫
dE

sinh2 (πE/
√

2k)
e

2iπrE
k

q̃−
E2
−ε̂
4k

η(τ̃ )
=

∫
dυ

q−
υ2

ε̂
2

η(τ)

∫
dE

cos 2πE
k

(√
k
2 υ + r

)

sinh2 (πE/
√

2k)
, (4.4)

with as before υε̂ ≡ (1+iε̂)υ. Finally, adding the contribution from SL(2, R)/U(1) discussed

above we get the open string channel amplitude as:

Z(τ) =
i

8

√
2

k

∑

r∈Z

chI(r; τ)

∫
dυ

q−
υ2

ε̂
2

η(τ)
×




∫

dE
cos 2πE

k

(√
k
2 υ + r

)

sinh2 (πE/
√

2k)



 . (4.5)

As expected, the density of states given by the bracketed expression is divergent (it has

a double pole at E = 0); this infrared divergence is due to the infinite “volume” along

the time direction as in ordinary Liouville theory. We can subtract this double pole, that
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will not contribute to the imaginary part of the amplitude, and then introduce the special

function S
(0)
β (x) [64]:

lnS
(0)
β (x) =

1

2

∫ ∞

0

dy

y

[
sinh(Qβ − 2x)y

sinhβy sinh β−1y
+

2x − Qβ

y

]
, (4.6)

with Qβ = β + β−1. In terms of this function we obtain the open string channel annulus

amplitude for the decaying D-particle in AdS3 as follows:

Z(τ) =
∑

r∈Z

chI

[
0

0

]
(r; τ)

∫
dυ

1

2π

d

dυ
ln S

(0)
1

(

1 − iυ − i

√
2

k
r

)
q−

υ2
ε̂
2

η(τ)

(
ϑ
[0
0

]
(τ)

η(τ)

)1/2

. (4.7)

Let us now consider the physical setup of interest, namely type iib strings on

AdS3× S3× T4 in the presence of the D-particle. Let us remind that we have chosen

to take a D0-brane in the S3 part of the background, i.e. the symmetric brane of SU(2)

with ̂ = 0 (which implies that only the ̃ = 0 representation is possible in the open string

sector) and Dirichlet boundary conditions along all the cycles of the four-torus. There are

also extra contributions from the twisted Neveu-Schwarz (i.e. with a (−)F insertion) and

Ramond sectors to the annulus amplitude in type ii superstrings. To write the density of

states in the open string channel twisted ns sector (coming from the closed string channel

r sector) it is useful to define another special function, which turns out to have no pole to

subtract at the origin:

ln S
(1)
β (x) =

1

2

∫ ∞

0

dy

y

sinh(Qβ − 2x)y

cosh βy cosh β−1y
. (4.8)

Once adding everything and integrating over the modular parameter τ we get the integrated

annulus amplitude for the rolling tachyon in AdS3× S3× T4:

A =
1

2

∑

a,b∈Z2

(−)b
∫

dt

2t

∑

r∈Z

chI

[
b

a

]
(r; τ) × (4.9)

×
∫

dυ
1

2π

d

dυ
ln S

(a)
1

(

1 − iυ − i

√
2

k
(r + b/2)

)

q−
υ2

ε̂
2 χ0(τ)

∑

{wi}

q
(Riwi)2

2

η3(τ)

ϑ
[b
a

]3
(τ)

η3(τ)
.

From this result we will derive in the following subsection the production of closed strings

as the imaginary part of the annulus amplitude.

As in ordinary Liouville theory the ”energy density” ∂υ ln S
(a)
1 (1 − iυ − ir

√
2/k ) is

related to the boundary two-point function [65]. This provides a consistency check for the

boundary state, analogous to the Cardy condition. The annulus amplitude contains first a

contribution from the “tachyon sector”, i.e. open strings with odd fermion number whose

lowest state is the open string tachyon. The associated spectral density is written in terms of

ln St
β(x) =

1

2

(
ln S

(0)
β (x) + ln S

(1)
β (x)

)
(4.10)

=

∫ ∞

0

dy

y

[
sinh(

Qβ

2 − x)y cosh
Qβy

2

sinhβy sinh β−1y
+

x − Qβ

2

y

]
= ln S

(0)
β

(x

2

)
S

(0)
β

(
x + Qβ

2

)
.
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This expression is closely related to the boundary two-point function of super-Liouville

theory given in [69]. We will discuss this issue in more detail in subsection 4.4. Similarly

for the “vector sector”, i.e. open string states with even fermion number, the spectral

density is written using

ln Sv
β(x) =

1

2

(
ln S

(0)
β (x) − ln S

(1)
β (x)

)
= ln S

(0)
β

(
x + β

2

)
S

(0)
β

(
x + β−1

2

)
. (4.11)

For the Ramond sector a similar decomposition according to the fermion number can be

carried out; however it is not useful in order to analyze the annulus amplitude since the

contribution from the twisted Ramond sector is identically zero.

4.2 Analysis of the closed string emission

As in [34, 74] we will now extract the imaginary part of this annulus amplitude, that

appears once we Wick-rotate the expression (4.10) to Euclidean signature υ → iυ.12 It

gives the mean number of produced on-shell closed string states as we will check later by

interpreting this quantity in the closed string channel.

The imaginary part of the annulus diagram comes from the simple poles of S
(0)
β (x) in

the densities (4.10), (4.11) (and also in the r sector), located at x = −nβ − mβ−1, for

m,n ∈ Z>0, and the simple zeroes for m,n ∈ Z<0. For β = 1 both give double poles of

the energy density. Compared to the flat space-time computation, with poles only on the

imaginary axis, the partition function contains new poles all over the υ-plane in the sectors

r 6= 0, much like in the annulus for the accelerating D-brane in NS5-backgrounds studied

in [74]. The residues of the poles situated in the upper-right and lower-left quadrant of

the υ-plane, including the imaginary axis, will then contribute to the imaginary part of

the annulus amplitude. Note finally that these poles don’t correspond to on-shell physical

open string states; the associated open string wave-functions decrease exponentially with

time towards past infinity. They correspond rather to on-shell closed string states as will

be shown below using channel duality.

Adding the contributions from the different sectors and using the symmetry (A.8)

defined in appendix A, we obtain from (4.10) the imaginary part of the annulus amplitude,

written in the open string channel, as the sum over the residues:

ImA =
1

2

∫ ∞

0

dt

2t

∑

a,b∈Z2

(−)bχ0(it)
ϑ
[
b
a

]3
(it)

η3(it)

∑

{wi}

e−πt(Riw
i)2

η3(it)

∑

r∈Z

chI

[
b

a

]
(r; it) ×

×
∞∑

n=1

(−)a(n+1) n e
−πt

“

n−i
q

2
k
(r+b/2)

”2

. (4.12)

The sign (−)a(n+1) in the last line comes from the analysis of the poles in the open string

twisted ns sector. Note that the sum over r is convergent because we get a factor of

e−2πt{(r+b/2)2/k+|r|} from the identity character chI(r; it) of SL(2, R)/U(1). As we show

below, this expression gives the distribution of closed string emission, as it is expected

12Together with a Wick rotation of the Schwinger parameter t.
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using an optical-like theorem and open/closed string duality of the annulus diagram [34]. To

obtain a proper closed strings interpretation of this quantity we need to modular transform

back to the closed string channel; the computation is given in appendix B.

4.2.1 Long strings production

We show that the mean number of produced closed strings is equal to the imaginary part

of the annulus diagram given by eq. (4.12), looking first at the emission of long closed

strings. The initial condition for closed strings at past infinity set by the rolling tachyon

worldsheet cft corresponds to the non-bps D0-brane boundary state, in the absence of

closed string radiation. We may expect that the production of very massive long strings is

highly suppressed, because the density of states at high energies is significantly lower than

in flat space-time (because the energy scales like E ∼ N/w with the oscillator number N ,

compared to E ∼
√

N in flat space-time). We turn now to the exact computation that

partially confirms these expectations.

After a modular transformation of the imaginary part of the annulus amplitude (4.12)

to the closed string channel, one get first a contribution from the continuous SL(2, R)

representations:

ImAc =
1

4k
∏

i Ri

∑

|φ〉∈Hc

k−2∑

2̃=1

sin

(
π(2̃ + 1)

k

) ∑

{ni}∈Z

∫
dP

∑

a,b

∑

N

(−)bF D(N) ×

×
∑

w 6=0

1

|w|

[
sinh 2πP sinh 2πP

k

cosh 2πP + cos π(kw − Ea)

]
(−)a

sinh2
(

πEa√
2k

+ iπa
2

) (4.13)

where the sum runs over the physical states |φ〉 in sub-Hilbert space Hc of closed strings

made with SL(2, R) continuous representations, that couple to the brane. In this equation

̃ is the SU(2) spin, ni are the toroidal momenta, D(N) is the density of states at oscillator

number N and F the worldsheet fermion number for a given string state. All these labels

have to be understood as functions of the state |φ〉.13 The term between square brackets is

the contribution from SL(2, R)/U(1) to the amplitude, while the last factor corresponds to

the amplitude for the time-like boson part. The on-shell space-time energy Ea for a long

string with w units of spectral flow and radial momentum P , in the ns (a = 0) or r (a = 1)

sector, reads [33]:

Ea =
kw

2
+

2

w

[
P 2 + 1/4

k
+

̃(̃ + 1)

k
+

∑
i(ni/Ri)

2

2
+ N +

a − 1

2

]
, (4.14)

Only left-right symmetric states couple to the brane. There are also no on-shell continuous

representations for w = 0. The details of the computation are given in appendix B.

This quantity is related to the closed string emission by the brane decay. In terms of

the coefficient Vw(E,P, . . .) of the one-point function for a closed string vertex operator in

13We should in principle take care more carefully of the different contributions to the density of states,

in particular of the null states. However we will eventually be interested in the high-energy tail of the

distribution for which these details are irrelevant.
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the rolling tachyon background, eq. (3.9), it can be expressed as

ImAc =
1

2π

∑

|φ〉

∫
dP

π

1

2

∑

a,b

∑

w 6=0,N,...

(−)bF D(N)
1

|w|

∣∣∣∣〈Vw (Ea [P,w,N, . . .] , P, . . .)〉
∣∣∣∣
2

=
∑

|φ〉

∫
dE

2π

∫ ∞

0

dP

π

1

2

∑

a,b

∑

w,N,...

(−)bF D(N) ×

× δ

(
−wE +

kw2

2
+

2(P 2 + 1/4)

k
+ 2N + · · ·

)
|〈Vw(E,P, . . .)〉|2 .

(4.15)

Following [23], this amplitude can be interpreted as N̄c, the mean number of long strings

produced by the D0-brane decay, traced over all the physical spectrum of closed strings in

the continuous representations. We work in the gauge with no oscillators for the time-like

boson, which is consistent as long as spacetime energy is not zero [76].14 In the present case

there are no physical long strings with zero energy. The invariant measure that appears

in (4.15), with the on-shell constraint δ(L0 + L̄0 + a− 1), is a natural generalization of the

point-particle measure to string theory.

The absence of a delta-function representing the conservation of the total energy stored

in the brane, which is justified for gs = 0, is a consequence of the fact that eq. (4.15) is

a tree-level amplitude (indeed one applies an optical-like theorem to the one-loop annulus

amplitude).

High energy behavior. We would like now to check whether, like in flat space-time,

there is an ultraviolet divergence associated with the production of very massive closed

strings. The leading term in the density of states, for the left-right symmetric string states

that couple to the D-brane, is given by [77, 78]:

ln D(N) = 2π

√
ceffN

6
+ O(ln N) , (4.16)

where the effective central charge is ceff = 12 − 6/k. To be more precise one should

count the transverse physical degrees of freedom in space-time using the decomposition

SL(2, R) ∼ SL(2, R)/U(1)×R0,1. Then the effective central charge differs from the central

charge by an amount proportional to the minimal scaling dimension in the spectrum of the

coset. Alternatively the asymptotic degeneracy of states can be computed directly from the

covariant AdS3 partition function for the continuous representations, since their characters

are identical to those of a free field theory, leading to the same result.15 As in [34], the

difference between the central charge and the effective central charge decreases the density

of states at high energy compared to flat space-time, but in AdS3 the main result is that

there is no Hagedorn density of states in a given sector of spectral flow w.

14Also the amplitude for a properly normalized descendant of the N = 2 superconformal algebra in the

SL(2, R)/U(1) super-coset is the same, up to a phase, as the amplitude of the primary state. It can be

shown using the (type B) boundary conditions on the N = 2 sca generators.
15Another way to reach this conclusion is to consider the effective linear dilaton cft living on the long

strings [79].
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Indeed, the spacetime energy of long strings, in the spectral flow sector w, grows with

the oscillator number as E ∼ 2N/w. Therefore the suppression of the production of very

energetic strings wins over the growth of the density of states which scales only like
√

N

as we saw above. It shows that, for a given sector of spectral flow, the production of very

massive closed strings is exponentially suppressed.

Let us first look at the distributions of the closed string radiation for the radial mo-

mentum P and the oscillator number N , in a given sector of spectral flow w. In (4.13), the

leading parts of the P -dependence from the SL(2, R)/U(1) contribution cancel for large P ,

leaving an exponential contribution of the form exp(2πP/k). Omitting for the moment the

summation over the zero modes of S3×T4, the amplitude (4.13) for large N and P behaves

like:

N̄c ∼ 1

k

∞∑

w=1

1

ω
e
−π

q

k
2
w

{∫ ∞

0
dP e

− 2π
k

hq

2
k

P2

w
−P

i}∑

N

Nγe
−2π

“q

2
k

N
w
−
√

(2−1/k)N
”

(4.17)

Notice again the term in the second exponential proportional to N/w which differs from

that similar term in flat space-time (or in the presence of a linear dilaton) where only√
N would have appeared. The exponent γ comes from the logarithmic corrections to the

asymptotic density of states (4.16) [80]. The distributions in radial momentum P and

oscillator number N for a given sector of spectral flow w are centered at

P̄w =

√
k

2

|w|
2

, N̄w =
w2(2k − 1)

8
, (4.18)

see figure 1. We see that the emitted long strings with large winding number are very

excited; they have an energy of order E ∼ kw/2 + 2P̄ 2
w/(kw) + 2N̄w/w = kw. The radius

of a long string with radial momentum P and winding number w growths linearly in global

AdS3 time as [33]

ρ =
2P

k

∣∣∣∣
t

w

∣∣∣∣ . (4.19)

Plugging in this formula the mean value of P , eq. (4.18), we observe that the mean speed

of growth of the long strings with large w emitted by the D0-brane decay is independent

of their winding number, with a standard deviation of order k−1/4w−1/2.

To check whether the sum over the different sectors of spectral flow w gives a finite

number of produced long strings, we first integrate (4.17) over P ; indeed the term exp(2πP/k)

can enhance the production of very massive long strings with large radial momentum. We

get:

N̄c ∼
∑

w>0

1√
w

e
−π

q

k
2 (1−

1
2k )w ∑

N

Nγe
−2π

“q

2
k

N
w
−
√

(2−1/k)N
”

. (4.20)

Then in the large w limit one can replace the sum over the oscillator number N by an inte-

gral. We find that the exponential terms in w cancel from the amplitude (4.20). Therefore,

the distribution of the radiation as a function of w is governed by the power-law corrections

to the asymptotic density of states, much as in flat space-time.
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Figure 1: Distribution of the long strings radiation for the radial momentum P and the oscillator

number N in a given sector of spectral flow w.

To evaluate the effect of the power-law corrections, we consider first the simplest case

of a non-critical superstring SL(2, R)|k=2×S1 × R4, with the brane localized on R4:

N̄c ∼
∑

w>0

1√
w

e−π(1− 1
4)w

∑

N

Nγe
−2π

“

N
w
−
√

3N/2
” [∫

dp e−π p2

w

]4

(4.21)

First, integrating over the R4 momenta one gets an extra factor of w2 in the sum (4.21).

Then, we have to count the contributions to the density of states of five free bosons and eight

free fermions (two of them being the S1 at the fermionic radius). Using the results of [81]

we find a ”universal” correction of order N−3/4, and an extra contribution of order N−5/4

from the five bosonic oscillators (in the light-cone gauge). Thus in this case the exponent

of the power-law correction is γ = −2 and the sum (4.20) behaves like N̄c ∼ ∑
w>0 w−1.

One can check that if one compactifies R4, for example on a square torus at the fermionic

radius for which the computation is simple, this result holds.

We find that the total number of emitted long strings from the decaying D0-brane is

log-divergent. Their mean energy is linearly divergent in w. It shows that the ultravio-

let divergence of closed string emission is not removed in AdS3, despite the much softer

high-energy behavior.16 Closed string perturbation theory breaks down due to a large

backreaction from the long strings. The same conclusions can be reached for the other

non-critical string backgrounds AdS3× S1× T2 and AdS3× S1. In appendix C we discuss

in detail the bosonic case where the states counting can be done explicitly. In the more

generic cases like superstrings on AdS3× S3× T4 the computation of the power-law cor-

rections to the density of states is more involved but will very likely leads to the same

conclusion. At least it is safe to say that, because of the power law behavior, higher mo-

ments En will be divergent for n large enough, signaling the breakdown of closed string

perturbation theory.

16Technically the factor sinh 2πP/k in (4.13) responsible for this result comes from the (absolute square

of the) worldsheet non-perturbative corrections to the SL(2, R)/U(1) one-point function, i.e. the term Γ(1+
2j−1

k
) in (3.9).
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Non-perturbative regularization. The tree-level computation of closed strings radia-

tion predicts that an infinite amount of energy is emitted by the decay of the D0-brane. This

divergence is regularized once non-perturbative effects kick in. The spectral flow is non-

perturbatively bounded from above, because long strings with winding number w ∼ Q1

carry an ns-ns two-form charge of the same order as the total charge of the Q1 back-

ground fundamental strings, for an AdS3× S3× T4 superstring with coupling constant g6 =√
k/Q1. This regularization gives N̄c ∼ − log g2

6 and the average radiated energy as Ē ∼
Q1 ∼ 1/g2

6. At weak coupling is far larger than the mass of the brane which is of order 1/g6.

One can understand this discrepancy, at least qualitatively, as follows. The amplitude

contains contributions from long strings with energies larger than (in units of 1/
√

α′)
1/g6, the inverse six-dimensional string coupling. One may make the assumption that the

contribution to the amplitude of these long strings, which lie outside the domain of validity

of string perturbation theory, is at most subdominant (their energy is of order of, or

larger than, the D0-brane mass). Therefore, since the typical energy of long strings with

winding w is E = kw, to exclude strings with E > 1/g6 one needs to put a cutoff of order

w < g−1
6 ∝ √

Q1 on the spectral flow number w. While from the point of view of the

number of produced long strings the effect is not dramatic, it gives an average radiated

energy of order 1/g6, in agreement with energy conservation. The distribution of closed

strings radiation is peaked near the cutoff scale.

One might have expected a qualitative difference for k < 1,17 because string theory on

AdS3 undergoes a phase transition there and long strings become weakly coupled near the

boundary [79]. In our computation the leading approximation to closed strings production

(i.e. the exponential terms) does not change at k = 1. The power-law corrections that

determine the behavior of the system are model-dependent and would require a more

detailed study.

Extended branes. The result found for long string emission seems peculiar to the D0-

brane since it comes from the exponentially large contribution of states with large ra-

dial momentum (of order e2πP/k) to the SL(2, R)/U(1) part of the amplitude (4.13), see

eq. (4.17). To obtain a uv finite long strings emission one may try to start with extended

D-branes in AdS3 (the analogue of an fzzt brane of Liouville theory).

We consider a symmetry-breaking D2-brane of AdS3 in type IIB superstrings, made

out of a D2-brane of the cigar. This D2-brane covers the whole AdS3 space-time

and has a magnetic field on its worldvolume; the latter is parameterized by a (quan-

tized) label σ ∈ [0, (1 + 1
k )π

2 ) [43, 45].18 The modulus squared of the one-point function

for the D2-brane in SL(2, R)/U(1) scales asymptotically with the radial momentum as

exp{2πP
k (2kσ

π − k − 1)}. Therefore, if one adds the rolling tachyon boundary deforma-

17For the AdS3× S3× T4 background that we take as an example we have always k > 2 but the regime

k < 1 can be obtained for certain non-critical backgrounds [79].
18The boundary cft for the D2-brane in SL(2, R)/U(1) is not completely well understood; see in par-

ticular [44, 46] for other proposals. We follow here the approach of [43, 45], continued to integer k [82].

Note that qualitatively the features discussed in this paragraph don’t depend on the particular D2-brane

boundary state chosen.
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tion (3.3) to the AdS3 worldsheet cft with a D2-brane boundary, one finds that long

string radiation is exponentially suppressed at high energies.

However, the physical interpretation of this worldsheet boundary cft is very different

from the D0-brane example. In the open string sector of the D2-brane, the identity (i.e.

the ns open string vacuum) is not normalizable. The physical open string tachyon on

the extended brane belongs to the continuous representations of SL(2, R),with j = 1/2 +

iP , P ∈ R+ and its wave-function is delta-function normalizable. Therefore one cannot

interpret the worldsheet theory with the boundary deformation (3.3) as the decay of the

unstable D2-brane. The latter would correspond to a boundary deformation built on

continuous representations of SL(2, R). We leave as an open problem the analysis of this

more complicated worldsheet boundary cft.

4.2.2 Short strings production

The closed string spectrum in AdS3 contains also discrete representations in the range (2.3).

They correspond to “short strings” trapped inside AdS3 [33]. By following the same steps

as above, we arrive to the following expression for the imaginary part of the annulus

amplitude, that is interpreted as the mean number of emitted physical short strings:

N̄d = ImAd =
1

2k
∏

i Ri

∑

|φ〉∈Hd

k−2∑

2̃=1

sin

(
π(2̃ + 1)

k

)∫ k+1
2

1
2

dj
∑

`,w∈Z

sin
π(2j − 1)

k
×

×
∑

a,b

∑

N

(−)bF D(N)
(−)a

|2j − 1 + kw| sinh2
(

πEa√
2k

+ iπa
2

) ×

×δ

(

j− 1

2
+

k

2
w−

√
1

4
+k

[
N+

̃(̃+1)

k
+

∑
i(

ni
Ri

)2

2
−w(`+

a

2
)−w+(1−a)

2

])

, (4.22)

summing over physical states belonging to the sub-Hilbert space Hd of closed strings made

with discrete SL(2, R) representations. The on-shell spacetime energy is now

Ea = 2

(
j + ` +

a

2

)
+ kw (4.23)

where j solves the delta-function constraint in eq. (4.22).

One of the main characteristics of the emitted short strings is that they don’t go away

far from the locus of the brane. Classical short strings with w = 0 are time-like geodesics

with a periodic motion around the origin, while classical spectral-flowed short strings have

a periodic breath mode [33]:

eiφ sinh ρ = ieiwσ sinh ρ0 sin
2jτ

k
with cosh ρ0 = 1 +

`

j
, (4.24)

where (τ, σ) are the worldsheet coordinates and (ρ, φ) the space-like global coordinates

in AdS3, see eq. (2.1). Unlike the continuous representations, there are on-shell discrete

states in the sector w = 0. The contribution of short strings with w = 0 is uv finite since

the upper bound on j of eq. (2.3) implies an upper bound on the oscillator number N in

this sector.
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Let us now examine the high energy behavior of the amplitude (4.22) in the sectors

of non-zero spectral flow w. As for long strings, the density of states grows exponentially

with the oscillator number N while the amplitude is exponentially suppressed as a function

of the energy (4.23). Because of the bounds (2.3) on the SL(2, R) spin j, for fixed large

spectral flow w, only the discrete states with ` ∼ N/w − kw/4 will contribute for N À 1.

Therefore, from eq. (4.23) giving the space-time energy, the amplitude is weighted at large

N by a factor
1

sinh2 πE√
2k

∼ e
−π

q

k
2
w−2π

q

2
k

N
w , (4.25)

similar to what we obtained above for long strings, see eq. (4.20). It is interesting that we

obtain, for short strings in a given spectral flow sector, the field theory entropy S(E) ∼
√

E

expected from AdS3/cft2 duality [35] using the bound (2.3) and the on-shell condition.

The leading contribution to the asymptotic density of states for the transverse degrees

of freedom, with a reasoning similar to the continuous representations, is given by (4.16)

with the same ceff = 12− 6/k.19 In contrast with the long strings sector, the contribution of

the square of the SL(2, R)/U(1) one-point function coefficient to the annulus amplitude, see

eq. (4.22), is of order one. The net effect is that the exponential suppression of short strings

emission wins over the asymptotic density of states at high energy. Therefore the number

of emitted short strings, evaluated at tree level, is uv finite. It means that, for a given

AdS3 radius (i.e. fixed k), one can choose the string coupling constant g6 small enough in

order to get an arbitrarily large fraction of the energy dissipated into long strings, rather

than into short strings.

Infrared divergence. Because the spectrum of discrete SL(2, R) representations con-

tains states with zero space-time energy, there is an infrared divergence in the computation

of the mean number of emitted short strings. From the worldsheet cft point of view it

comes from the extra primaries at E = 0, that we discussed briefly in subsection 3.1. The

only SL(2, R) physical states with zero energy (and compatible with the gso projection)

are the N = 2 Liouville interaction [73] and its image under one unit of spectral flow. It is

also worthwhile to remind that this divergence is eliminated if we choose the “full-S-brane”

solution (3.1a) instead of the “half-S-brane” [23]. There is no indication that this infrared

divergence is more harmful that in flat space-time.

Flat space-time limit. It is interesting to have a look at the k → ∞ limit, in order to

connect our results to those obtained in flat space-time.20 Let’s consider first the continuous

SL(2, R) representations. Unflowed states (w = 0) are not part of the physical spectrum

even for k = ∞ as they correspond to space-like geodesics. Long strings decouple in the flat

space-time limit, because their mass is of order kw. The unflowed discrete representations

play the main role in the k → ∞ limit (the contributions of short strings with w 6= 0 to

the amplitude are also suppressed in the large k limit). Indeed the upper bound on the

19One can also find an upper bound on the degeneracy of states using the explicit expansion of the

discrete representations characters, confirming this result.
20We thank Nissan Itzhaki for discussions about this issue.
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SL(2, R) spin j, see eq. (2.3), which prevents them from giving a significant contribution to

closed string emission, disappears. At large N states with j ∼
√

kN will give contributions

to the amplitude (4.22) for closed string emission of order e−2π
√

2N , like in flat space-time.

As the density of states (4.16) converges also to the flat space-time value in the k → ∞
limit, we recover the main aspects of the flat space-time results found in [24, 23]. In order

to get a precise matching one needs to be very careful about the order of limits. The

energy dissipated into short strings is independent of g6 at leading order. For fixed g6 if

one increases k, i.e. decreases the AdS3 curvature, one expects to reach a turnover point

above which the short strings production is dominant.

Summary of closed string emission. Our computation of the annulus amplitude

shows that, at small string coupling, almost all the energy radiated into closed strings

resides in long strings with large winding number. The short strings production is finite

and carries only a small fixed fraction of the energy. The radiation of long strings changes

effectively the string coupling constant (in the interior of the shell of closed strings that are

emitted), since g2
s ∝ 1/Q1, where Q1 is the number of fundamental strings that build up the

background. This quantity will of course receives higher order perturbative corrections,

e.g. multi-closed strings emission which is of order g
2(N−1)
s for N -particle states.

In flat space-time, the characteristics of the closed string radiation led Sen to the

open string completeness conjecture [26], which states that the open string field theory

description gives a complete description of the decay, in particular “takes care” of the

apparently large back reaction due to massive closed strings. This open string descrip-

tion is approximated by the worldvolume Born-Infeld-like action for a non-bps D-brane,

which exhibits the distinctive features of tachyon condensation as described by closed string

radiation, namely pressureless matter in the asymptotic future and no plane waves excita-

tions near the minimum of the potential, signaling the presence of “tachyon dust” made of

non-relativistic massive closed strings.

In the example studied here, D-particle decay in AdS3, the radiation is made of macro-

scopic long strings. Both cases are attempts to take perturbation theory beyond its range

of validity. The two pictures, flat space-time and AdS, coincide in the region where per-

turbation theory is valid, i.e. for a timescale of order
√

α′, before the long strings radius

become significantly larger than the string scale, and the two pictures diverge after that

time.

4.3 Comparison with non-critical strings

As we demonstrated above, in AdS3 the high-energy divergence in closed strings emission

from the brane decay is regularized non-perturbatively. It has been suggested in [34] that

for brane decay in non-critical strings the closed string emission is uv-finite a tree level,

because the high-energy density of states is somewhat lower than in flat space-time. As

anticipated in the introduction it is very unlikely that the high-energy behavior of non-

critical strings could be softer than string theory in anti-de Sitter space-time. We would

like to clarify this issue by uncovering similar divergences in non-critical strings (to those

in AdS3), although the mechanism of closed string emission is different.

– 27 –



J
H
E
P
0
1
(
2
0
0
7
)
0
6
9

For concreteness we consider unstable D-branes in superstring theories of the form

R2n,1 × RQ. In order to obtain a stable supersymmetric background, and regularize the

strong coupling region due to the linear dilaton, one has to compactify one of the spatial

directions at a precise radius and add an N = 2 Liouville potential. Then one obtains the

worldsheet cft R2n−1,1 × SL(2, R)/U(1)|2/(4−n) with the appropriate gso projection.

As in [34] we could consider first a non-bps brane extended along the linear dilaton

direction ρ, i.e. made of a D1- or D2- brane of the cigar.21 However, as for the D2-brane

in AdS3 discussed above, the rolling tachyon boundary deformation (3.3) is built with the

identity of the SL(2, R)/U(1) coset. The latter is not normalizable on the extended brane

because of the asymptotic linear dilaton. It means that, while being a consistent worldsheet

boundary cft, it does not represent the decay of the physical open string tachyon living

on the brane.

The open string tachyon on the extended brane belongs to the continuous representa-

tions of SL(2, R)/U(1), as for the extended brane in AdS3 discussed above. To analyze its

decay using bcft methods one should consider instead the worldsheet theory deformed by

a boundary marginal deformation of the asymptotic form

δS = λ

∮

∂Σ
d` G−1/2e

− 1/2+iP√
2k

ρ+

q

1
4
−P2+1/4

2k
X0

σ1 . (4.26)

As in AdS we do not know how to solve the theory in the presence of this boundary term

in the action even in the case P = 0, i.e. homogeneous decay. It would be interesting also

to understand the physics of the rolling tachyon (3.3) in the non-critical strings context, in

particular to understand if and why closed strings emission is finite there. In bosonic strings,

similar statements can be made, considering an fzzt extended brane [64] of Liouville

theory.22

The exact non-critical string analogue of the unstable D-particle that we study in

AdS3 is to consider a non-bps D0-brane made with a D0-brane of the SL(2, R)/U(1) coset,

i.e. localized at the tip of the cigar (similar to a zz brane of bosonic Liouville theory).

In the open string sector the identity of the SL(2, R)/U(1) cft is normalizable therefore

one can describe the condensation of the physical open string tachyon with the boundary

deformation (3.3). Let’s consider six-dimensional superstrings, i.e. R5,1×SL(2, R)/U(1)|k=2

as an example. The one-point function for an operator in the the continuous representations

of the coset is:

|〈V sl2/u1

j=1/2+iP ss̄ eiEX0〉|2 ∝ δs,−s̄
sinh 2πP sinhπP

cosh 2πP + cos πs

1

sinh2 πE
, (4.27)

where (s, s̄) are the Z4-valued left and right momenta of U(1)2. In the non-critical super-

string the on-shell condition is simply

E =

√
P 2 + 1/4 +

s2

2
+ p2 + 2N − 1 , (4.28)

21The analogous problem of the decay of an fzzt brane in 2D bosonic string theory has been discussed

in [83].
22In both cases, bosonic and supersymmetric, the bulk Liouville potential is not important in the discus-

sion if one takes the boundary cosmological constant much larger than the bulk cosmological constant, in

such a way that the brane ”dissolves” in the weak coupling region.
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where P is the radial momentum in SL(2, R)/U(1) and p the R5 momentum transverse to

the brane. The density of states that appears in the computation of the annulus amplitude,

including the power-law corrections, is the same as our SL(2, R)|k=2 × S1 × R4 previous

example:

D(N) ∼ N−2e
2π

q

3N
2 . (4.29)

So at large N and P the mean energy emitted by the brane decay scales like

Ē ∼
∫

d5p

∫
dP

∑

N

1

N2
e
2π

q

3N
2 eπP e−2π

√
P 2+2N+p2

∼
∫

dP
∑

N

1

N2
e
2π

q

3N
2 e−π(2

√
P 2+2N−P )

[∫
dρ e

− πρ2√
P2+2N

]5

. (4.30)

One can use a saddle point approximation to evaluate the integral over P at large N .

As for the D0-branes in AdS3, the exponential terms in
√

N cancel, leaving the power-law

corrections that determine the behavior of the amplitude. One obtains that the total energy

radiated into closed strings, evaluated at tree level, diverges like
∑

N N−1/2. Therefore in

non-critical superstrings the uv divergence of closed strings emission remains.23

4.4 Open string pair production

One possible way of radiating the energy of the D-brane, as an intermediate stage of the

brane decay, is to consider open string pair creation. It is not completely clear what is the

meaning of this process since the open string loose their support. However if this emission

happens to be divergent it singles the breakdown of open strings perturbation theory. This

would render unreliable both the open string and the closed string computations at tree

level.

Let’s consider the boundary theory of an unstable D-particle in the presence of bound-

ary deformation (3.1b). At past infinity x0 → −∞ this interaction vanishes and the

spectrum of open strings can be read from the D-particle partition function (2.11). A very

important difference with the closed string spectrum is that the SL(2, R) contribution splits

into an SL(2, R)/U(1) part and a U(1) temporal part whose zero-modes are independent

from each other. Therefore the scaling of the energy with the oscillator number is the

same as in flat space: E ∼
√

N/α′. However, despite the fact that the open string spec-

trum contains the identity, the effective central charge entering in the asymptotic density

of states (4.16) is the same as in the closed string sector (ceff = 12 − 6/k), because this

leading contribution is evaluated by modular transform of the annulus amplitude to the

closed string channel where the minimal conformal dimension in the SL(2, R)/U(1) cft is

∆min = 1/4k.

To conclude, AdS3 string theory looses in the tree-level approximation one of its promi-

nent features in the open string sector of the unstable D-particle. It has an Hagedorn

growth of the density of states at high energies, with the same Hagedorn temperature as a

23The decay of zz branes in 2D bosonic string theory has been considered in [84], and recently extended

in [85] to higher dimensions. In all those cases the closed strings emission is also divergent.
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non-critical superstring with a dilaton slope Q =
√

2/k.24 This has to be contrasted with

the spectrum of AdS2 branes [29]. This fact may probably not be true non-perturbatively

since string theory on AdS3 is dual to a field theory and should not exhibit an Hagedorn

growth of the density of states in any sector. In any case we will show that even with this

Hagedorn behavior there is a finite average number of produced open strings because the

Hagedorn temperature is higher than is flat space.

The computation of the amplitude for pair production of open strings uses the bound-

ary two-point function, which plays the role of a Bogolioubov coefficient [19]. We have

already seen that it is related to the energy density appearing in the open string annulus

amplitude of eq. (4.10); we shall now discuss how to obtain its actual expression using the

orbifold construction of subsection 3.3.

It is quite interesting that the open string annulus amplitude for the rolling tachyon,

eq. (4.7), that we obtained by channel duality from the closed string annulus ampli-

tude (4.1), does not exhibit poles corresponding to on-shell open strings pair-produced

by the time-dependent interaction. As we saw above its imaginary part signals the pro-

duction of closed strings. Some comments about this issue can be found in [34].

We consider in the following the bosonic case for technical convenience. The extension

to the superstring, using the results of [69] is possible. We start with the boundary two-

point function in ordinary Liouville theory (with Q = b + b−1). The boundary two-point

function, or reflection amplitude, for an open string ”tachyon” of dimension ∆ = α(Q−α),

interpolating between the boundary conditions s1 and s2, is given by [64]:

db(α|s1, s2) =
b

2π

(
µπ

Γ(b2)

Γ(1 − b2)

)Q−2α
2b

Γ

(
2α

b
− 1

b2

)
Γ

(
2bα − b2 − 1

)
×

× S
(0)
b (2α)

S
(0)
b (α + s1+s2

2i )S
(0)
b (α − s1+s2

2i )S
(0)
b (α + s1−s2

2i )S
(0)
b (α − s1−s2

2i )
, (4.31)

using the special function S
(0)
b (x) defined by eq. (4.6). First, as discussed in subsection 3.1,

we are interested in the limit of vanishing Liouville interaction µ
∫

d2z exp 2bρ(z, z̄), while

keeping fixed the boundary cosmological constant λ̃, i.e. with a fixed boundary interaction

of the form:

δS =
λ̃

2

∮

∂Σ
d` ebρ(`) . (4.32)

This regime corresponds to a brane which ”dissolves” way before the Liouville potential

becomes important because the boundary potential (4.32) acts like a barrier for open string

modes. The boundary parameter s is related to the boundary cosmological constant as

λ̃2 =
4µ

sinπb2
cosh2(πbs) , (4.33)

24Of course since this D-brane is unstable the thermodynamics of open strings attached to it is not

well-defined.
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such that we consider the limit µ → 0, s1,2 → ∞, with (s1 − s2) fixed. As in [19], using

the asymptotics of S
(0)
b (x) one gets for the boundary two-point function:

db(α|s1, s2) =
b

2π

(
π2λ̃1λ̃2

Γ(1 − b2)2

)Q−2α
2b

Γ

(
2α

b
− 1

b2

)
Γ

(
2bα − b2 − 1

)
× (4.34)

× S
(0)
b (2α)

S
(0)
b (α + s1−s2

2i )S
(0)
b (α − s1−s2

2i )
. (4.35)

The boundary two-point function for time-like boundary Liouville theory is obtained in

the limit b → i. However in this limit the function S
(0)
b (x) has an infinite number of poles

accumulating for every x ∈ iZ. One therefore should give some prescription for this limit;

we refer the reader to [19, 66] for details about these issues.

In the orbifold construction of the rolling tachyon in AdS3, see subsection 3.3, we start

with branes on the covering space of the orbifold, i.e. SL(2, R)/U(1)v∞ × R0,1, and sum

over the images under the geometric identification. In the orbifold theory there are new

boundary operators corresponding to open strings stretched between the brane and one of

its images.25

Open strings in the rolling tachyon bcft stretched between a brane and its image under

the translation Tr correspond to boundary operators interpolating between the boundary

cosmological constants26 λ̃1 and λ̃2 = λ̃1e
2πr/

√
k, i.e. the temporal part of the boundary

two point function is given by the b → i limit of (4.35) with s1 − s2 = 2ir/
√

k. The

annulus amplitude for open strings stretched between two such branes contains only the

coset character chI(r; τ) coming from the identity representation of ŝl(2, R), see the open

string partition function (4.7).

Using the prescription of [19] one finds that the temporal part of the boundary two-

point function in AdS3, for an open string vertex operator of the form eiυX0
of conformal

dimension ∆ = −υ2 is given by:27

di(υ|r) =
(
πλ̃e

πr√
k

)2iυ S
(0)
1 (1 − 2iυ)

S
(0)
1

(
1 − iυ − ir√

k

)
S

(0)
1

(
1 − iυ + ir√

k

) ×

×
sinhπ(υ + r√

k
) sinhπ(υ − r√

k
)

sinh2 2πυ
. (4.36)

This result is as expected closely related to the (bosonic version of the) energy den-

sity (4.10). Using the identity S
(0)
b (x)S

(0)
b (Qb − x) = 1 we observe that the first line

of the boundary two-point function (4.36) is a pure phase.

The SL(2, R)/U(1) part of the boundary operator belongs to the coset module built

on the SL(2, R) operator in the identity representation with J3 = r, see the orbifold

action (3.17) and the partition function (4.7), and can be normalized to one. Therefore

25See the reference [86] for a detailed analysis of the rational cft analogue.
26There is a factor of

√
2 in the bosonic theory compared to the superconformal case discussed in sub-

section 3.3.
27The methods developed in [66] are more appropriate to the Euclidean c = 1 Liouville theory.
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the modulus of the boundary two-point function for the rolling tachyon in AdS3 in the

r-sector is:

|d(υ|r)AdS| =

∣∣∣∣∣
sinh π(υ + r√

k
) sinh π(υ − r√

k
)

sinh2 2πυ

∣∣∣∣∣ . (4.37)

Following [19] one can identify the boundary reflection amplitude d(υ|r) with the

Bogolioubov coefficient −γout ∗
υ = βυ/αυ. Then the vacuum amplitude giving the rate of

pair production (see [34] for details) is obtained as:

W = −Re ln〈out|in〉 = −1

4

∑

N,r

D(N, r) ln(1 − |γυ(N, r)|2)

= −1

4

∑

N,r

D(N, r) ln
(
1 − |d(υ(N, r)|r)AdS|2

)
. (4.38)

The on-shell energy for an open string in the r-sector is:

υ(N, r) =

√
r2

k
+ r + N − 1 (4.39)

Using the asymptotics of (4.37) for large υ and the high energy density of open string states

as discussed above, we find the uv asymptotic behavior

W ∼
∑

r∈Z

∑

N

e
−4π

q

r2

k
+r+N−1

“

1−
q

1− 1
4k

”

. (4.40)

Therefore open string pair production from the D0-brane decay in AdS3 is exponen-

tially convergent at high energies because, as in [34] for non-critical strings, the high-energy

density of states is lowered compared to flat space-time. The same conclusion holds for the

superstring case. It shows that open string perturbation is not invalidated by an infinite

open string pair production. The average number of emitted open string pairs does not

depend on the string coupling gs in the leading order, thus open string pair production

is negligible compared to the emission of closed long strings at weak coupling. In the

k → +∞ flat space-time limit, the open string pair production is governed by power-law

corrections and its divergences depend on the dimensionality of the brane and the specific

energy moment considered.

5. Comments on holography

One of the main reasons to study string theory on AdS3 is that, besides being an interesting

example of curved space-time, it is an incarnation of the AdS/cft holographic correspon-

dence between gravity and field theory [35]. It is actually the only example at our disposal

for which the string theory is under control, at least in the perturbative regime, because

of its realization as an SL(2, R) wzw model.

However life is not so simple; the space-time two-dimensional cft dual to AdS3 back-

grounds with only ns-ns flux (i.e. with a wzw model description) is singular because the

brane configuration that realizes this field theory on their worldvolume in the infrared limit
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can fragment at no cost of energy [32]. One can move away from this singularity by turn-

ing on moduli in the space-time cft. They correspond in space-time to Ramond-Ramond

fluxes that invalidates the rns construction of the worldsheet theory. As these fluxes pre-

vent long strings from expanding towards the boundary, it modifies quite drastically the

physics of the decay. We refer the reader to the review [87] for more details and references.

Once focusing on the bps sector of the space-time cft one can argue that certain

quantities are protected by supersymmetry, allowing to compare results from the super-

gravity/worldsheet cft side and from the space-time cft at a non-singular point in the

moduli space [88 – 90]. We are interested here in the decay of a non-bps state, materialized

on the gravity side as a D-particle, therefore there is no simple way to find its dual in the

space-time theory. We will collect in this section some facts that may hint the solution of

this problem.

The D1-D5 system and the symmetric product CFT. Among the various AdS3

backgrounds, type iib on AdS3× S3× T4 has the most studied holographic dual; indeed it

is related to the microscopic construction of supersymmetric black holes. This space-time

is obtained as the near-horizon limit of k NS5-branes wrapped on T4 and Q1 fundamental

strings smeared on the compact manifold.

In the S-dual picture, i.e. as a collection of D1- and D5-branes, the open string massless

degrees of freedom give a two-dimensional U(k)×U(Q1) quiver gauge theory with N = (4, 4)

supersymmetry. At very low energies, the Higgs branch of the quiver theory flows to

an N = (4, 4) superconformal theory, a non-linear sigma model for the hypermultiplets

whose target space is an hyper-Kähler manifold, together with a free N = (4, 4) cft

corresponding to the center of mass coordinates on T4. The target space of the former

can be seen as the moduli space M of Q1 instantons in a U(k) gauge theory on T4.

This scft lies in the moduli space of the symmetric product (T 4)kQ1/S(kQ1) and has a

central charge c = 6kQ1 [91]. For the “pure” D1/D5-system – or equivalently via S-duality

the NS5/F1 background without Ramond-Ramond fluxes – this conformal field theory is

singular, because of the small instanton singularities in M. From the 1+1 gauge theory

perspective it is obtained by turning off the Fayet-Iliopoulos (fi) terms and the theta-angle.

This process corresponds to a situation where a long D-string, viewed as an instanton in the

D5-brane worldvolume, “leaves” the system of branes [32]. The singularity occurs where

classically the Higgs branch and the Coulomb branch meet.

5.1 Instantons, sphalerons in AdS3 and their holographic dual

Before addressing the difficult problem of finding the dual of the unstable D-particle, we

would like to understand precisely the meaning of the AdS3 D-instanton constructed in

section 2 in the context of the space-time cft. These two objects are closely related for

two reasons.

First, the D-instanton and the D-particle boundary states in AdS3 differ only by the

gluing conditions along the time direction; they come from the same D-brane in the coset

SL(2, R)/U(1). Moreover, the worldsheet analysis of the D0-brane decay involves also D-

instantons in an interesting way. Following [23], we can interpret the imaginary part of the
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annulus diagram for the rolling tachyon, eq. (4.12), as a sum over contributions from an

array of D-instantons (whose annulus amplitude is given in [30]) along the imaginary time

axis.

Second, and more importantly, it has been argued [92] that the unstable D0-brane

in type iib superstring theory is a sphaleron, i.e. an unstable classical solution associated

with a non-contractible loop in configuration space [93]. Inspired by this idea, it has been

shown that in AdS5× S5 the D-particle located at the origin of global coordinates in AdS5

is indeed a sphaleron in the gauge theory [37]. The latter is related to the sym instanton

in the sense that it is a classical solution of theory at the maximum of the potential barrier

between two vacua of the gauge theory for which the instanton represents the tunneling

process. It allowed to argue that the sphaleron survives at strong coupling – which is

the regime where the holographic duality can be probed on the string side – because the

associated instanton is a topologically stable and bps object.

Instantons in the D1/D5 system. As discussed above the worldvolume theory of the

D1/D5 system is described in the infrared limit, dual to string theory on AdS3× S3× T4,

by a non-linear sigma model on M with N = (4, 4) superconformal symmetry. Near the

point where one D1-brane could leave the system (for which a Coulomb branch opens

up) the dynamics of the system is well described by a non-linear sigma model on the

cotangent bundle of CPk. Then one gets instantons associated with maps C → CPk

described as vortices in the linear sigma-model description of the theory [94] (see [95, 96]

for recent works on this subject). The action of these bps instantons vanishes for zero

fi terms, i.e. when the singularities are blown-down, and zero theta-angle. The AdS/cft

dictionary matches the fi terms with the self-dual part of the ns-ns two-form on T4, in

the D1/D5 description. One may identify these instantons with the Euclidean D1-branes

wrapping holomorphic cycles of T4 discussed in [97]. With an ns-ns two-form turned on,

a D1-charge is induced in the presence of a non-zero instanton charge density through the

coupling
∫

R×S1×T 4 B ∧ C2 ∧ F on the D5-brane worldvolume.

It is however not clear to us what is the dual of the D(-1)brane, that we constructed

in the AdS3× S3× T4 background with only ns-ns fluxes (i.e. at the singular point) since

a D(-1)-D1-D5 configuration is not supersymmetric.28 The D(-1)-brane is expected to

form a bps bound state with the D1/D5 system ”dissolving” in their wordvolume. As for

the D0-D2 bound state, the D(-1) turns into an electric field in the D1-brane worldsheet,

inducing a D(-1) charge through the coupling
∫

R×S1 C0 F in the D-string action. Similarly

an Euclidean D3-brane wrapped on the T4 can dissolve in the D5-branes as an electric

field.29 In the AdS/cft correspondence the theta angle of the D1/D5 gauge theory is

identified with a linear combination of the rr axion C0 and the rr four-form C4 on T4.

Since the theta-angle in two dimensions is equivalent to an electric field, it may be related

to (a superposition of) D(-1) and D3 instantons.

28We would like to thank O. Aharony, A. Mikhailov, S. Rey and D. Tong for discussions about this

problem.
29In the S-dual NS5/F1 description, these two kinds of D-instantons are both point-like in the AdS3

space-time and differ only by the boundary conditions (Dirichlet or Neumann) on T4.
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An amusing observation about these D-instantons comes from the boundary worldsheet

cft solution itself. To find what kind of object the D-instanton represents in the space-time

cft it is convenient to Fourier transform the worldsheet vertex operators of the Euclidean

AdS3 (i.e. H+
3 ) cft, in target Euclidean space-time. In this basis the primary operators are

written as Φj(u, ū|z, z̄), where (u, ū) are the coordinates on the plane where the space-time

cft lives, whereas (z, z̄) are the worldsheet coordinates. Then the one-point function in

the presence of the D-instanton takes the form [28]

〈Φj(u, ū|z, z̄)〉 =
1

|z − z̄|2∆
U(j)

(1 + uū)2j
. (5.1)

The (z, z̄) dependence on the upper-half plane is fixed by conformal symmetry on the

worldsheet, while the (u, ū) dependence is fixed by conformal symmetry on the boundary

of space-time where the dual space-time cft is defined. It is very surprising that this

functional form gives exactly a one-point function for an operator of dimension ∆st =

∆̄st = j in the space-time cft on RP2, i.e. in the presence of a crosscap. It leads us

to the rather weird conclusion that, from the point of view of the space-time theory, the

D-instanton corresponds to a crosscap.30 We will not push forward this interpretation

because, while suggested by the boundary worldsheet cft computation, its meaning is not

very clear to us.

As for the D-instantons, the very existence of the non-bps D0-brane in the string

theory suggests that there is a corresponding sphaleron in the space-time cft. It would

be very interesting to understand how its decay could be related to the holographic dual

of long strings emission, i.e. the passage from a Higgs to a Coulomb branch corresponding

to the partial fragmentation of the brane stack.
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A. AdS3 conformal field theory and characters

In this appendix we recall some facts about string theory on AdS3 that are used in the

body of the text, with an emphasis on the analytic continuation. We are interested in the

SL(2, R) super-wzw at level k, made with a purely bosonic wzw model at level k + 2 and

three free fermions of signature (−,+,+).

SL(2, R) from SL(2, R)/U(1). To deal with the Lorentzian signature of the SL(2, R)

group manifold, it is convenient to decompose the SL(2, R) representations according to its

time-like elliptic subalgebra. It corresponds to the equivalence

SL(2, R)k ∼ SL(2, R)/U(1)|k × U(1)−k

Zk
, (A.1)

where the right-hand side is written in terms of the super-coset SL(2, R)/U(1) and a time-

like free boson X0 at radius
√

2k. AdS3 spacetime is the universal cover of the SL(2, R)

group manifold, obtained by taking a continuous Z orbifold instead of the discrete Zk. One

can use this decomposition to define the Wick rotation of the AdS3 cft in moduli space,

see [30] for details.

To construct the closed string spectrum of the theory, we start with the partition

function of SL(2, R)/U(1)×U(1) and implement the diagonal orbifold action that defines

the Euclidean AdS3 cft in the standard way compatible with modular invariance. The

conformal weights of the SL(2, R)/U(1) primaries in the ns-ns sector are given by

L0 = −j(j − 1)

k − 2
+

(n + kw)2

4k
, L̄0 = −j(j − 1)

k − 2
+

(n − kw)2

4k
. (A.2)

n and w are respectively the momentum and winding around the cigar at infinity. The

corresponding vertex operators are written as

V
j, sl2/u1
n−kw

2
; n+kw

2

(z, z̄) (A.3)

The vertex operators of the SL(2, R) wzw are represented in the orbifold theory (A.1) as

follows:

V j, sl2
m m̄ w+

= V
j, sl2/u1

m− kw+
2

;−m̄+
kw+

2

e
i
q

2
k
(mX0(z)+m̄X0(z̄))

. (A.4)

with m, m̄ ∈ R and m− m̄ = n. The sum w+ of the winding numbers of the SL(2, R)/U(1)

and U(1) theories is identified with the sector of spectral flow.

Representations and characters. The characters of the SL(2, R)/U(1) super-coset at

level k come in different categories corresponding to the classes of irreducible representa-

tions of the SL(2, R) algebra in the parent theory. In all cases the quadratic Casimir of the

representations is c2 = −j(j − 1).

Firstly we consider continuous representations, with j = 1/2 + ip, p ∈ R+. The

characters are denoted by chc(p,m)
[a
b

]
, where the N = 2 superconformal U(1)R charge of

the primary is Q = 2m/k, m ∈ Z/2. Explicitly they are given by:

chc(p,m; τ, ν)

[
a

b

]
= q

p2+m2

k e4iπν m
k

ϑ
[
a
b

]
(τ, ν)

η3(τ)
. (A.5)
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Then we have discrete representations with 1/2 6 j 6 k+1/2, of characters chd(j, r)
[
a
b

]
,

where the N = 2 U(1)R charge is Q = (2j + 2r + a)/k, r ∈ Z. The characters read:

chd(j, r; τ, ν)

[
a

b

]
= q

−(j−1/2)2+(j+r+a/2)2

k e2iπν 2j+2r+a
k

1

1 + (−)b e2iπνq1/2+r+a/2

ϑ
[
a
b

]
(τ, ν)

η3(τ)
.

(A.6)

While the closed string spectrum in SL(2, R) contains only discrete and continuous

representations, the spectrum of open string attached to localized D-branes is built on

the identity representation. The character for this identity representation we denote by

chI(r)
[a
b

]
. It is given by:

chI(r; τ, ν)

[
a

b

]
=

(1 − q) q
−1/4+(r+a/2)2

k e2iπν 2r+a
k

(
1 + (−)b e2iπνq1/2+r+a/2

) (
1 + (−)b e−2iπνq1/2−r−a/2

) ϑ
[a
b

]
(τ, ν)

η3(τ)
. (A.7)

These characters have the reflection symmetry

chI

[−a

−b

]
(−r; it) = chI

[
a

b

]
(r; it) . (A.8)

The primaries in the NS sector for this identity representation are as follows. First we have

the identity operator |j = 0, r = 0〉 ⊗ |0〉ns. The other primary states are:

|r〉 = ψ+
− 1

2

|0〉ns ⊗ (J+
−1)

r−1|0, 0〉bos for r > 0 with L0 =
r2

k
+ r − 1

2

|r〉 = ψ−
− 1

2

|0〉ns ⊗ (J+
−1)

−r−1|0, 0〉bos for r < 0 with L0 =
r2

k
− r − 1

2
.

B. From the annulus to closed strings emission

In this appendix we show how to get the mean number of emitted closed strings from the

imaginary part of the annulus amplitude, given by eqn, (4.12). As quoted in the text the

sum over r is finite because the divergent terms from exp−πt(n − i
√

2/k(r + b/2))2 are

compensated with the weights in the SL(2, R)/U(1) characters. However it prevents from

performing the modular transform to the closed string channel in a straightforward way.

To do so we need to add a regulator to the amplitude (4.12):

ImAε =
1

2

∫ ∞

0

dt

2t

∑

a∈Z2

(−)bχ0(it)
ϑ
[b
a

]3
(it)

η3(it)

∑

{wi}

e−πt(Riw
i)2

η3(it)

∑

r∈Z

e−πεr2
chI

[
b

a

]
(r; it) ×

×
∞∑

n=1

(−)a(n+1) n e
−πt

“

n−i
q

2
k
(r+b/2)

”2

. (B.1)

Then we can modular transform the various factors and get first a contribution from the
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continuous representations, with s = 1/t:

π

k2
∏

i Ri

∫ ∞

0
ds

∑

a∈Z2

(−)b
∑

̃

sin
π(2̃ + 1)

k
χ̃(is)

ϑ
[
a
b

]3
(is)

η3(is)

∑

{ni}

e−πs(ni/Ri)
2

η3(is)
×

×
∫

dPdµ
sinh 2πP sinh 2πP/k

cosh 2πP + cos 2πµ
chc(P, µ; is)

∑

r∈Z

e−πεr2
e−

4iπµ(r+b/2)
k ×

×
∞∑

n=1

(−)a(n+1)

∫
dp0 e−

πsp2
0

2k e
2iπp0(

n√
2k

− i(r+b/2)
k

)
. (B.2)

Now we expand the contribution of the various characters in the partition function. We

have schematically, e.g. in the ns sector:

χ̃(is)
ϑ
[0
b

]3
(is)

η3(is)

e−πs
P

i(ni/Ri)
2

η3(is)
chc

[
0

b

]
(P, µ; is)

∼
∑

N ;ns

(−)bF D(N)e
−2πs

„

̃(̃+1)
k

+
P2+1/4

k
+ µ2

k
+

(ni/Ri)
2

2
+N− 1

2

«

. (B.3)

where D(N) is the density of states at oscillator number N , and F the worldsheet fermion

number for a given string state. Of course one would need to expand more rigorously the

various characters and to keep track of the null vectors of SU(2)k. After integrating over

the Schwinger parameter s we get

1

2k2
∏

i Ri

∑

a,b

∑

N

∑

̃

sin
π(2̃ + 1)

k

∞∑

n=1

n(−)a(n+1)+bF D(N) ×

×
∫

dµdP
sinh 2πP sinh 2πP/k

cosh 2πP + cos 2πµ
e−

2iπµb
k × (B.4)

∫
dp0

e
2iπp0( n√

2k
+ ib

2k
)

p2
0

4k + µ2

k + ̃(̃+1)
k + P 2+1/4

k + µ2

k + (ni/Ri)2

2 + N − a−1
2

∑

r∈Z

e−πεr2+2πp0
r
k
− 4iπµr

k

The integral over p0 closes in the upper-half plane and gets a contribution from the simple

pole at p0 = 2i
√

µ2 + k∆ with

∆ =
̃(̃ + 1)

k
+

P 2 + 1/4

k
+

µ2

k
+

(ni/Ri)
2

2
+ N +

a − 1

2
. (B.5)

We get

π

k
∏

i Ri

∑

a,b

∑

N

∑

̃

sin
π(2̃ + 1)

k

∞∑

n=1

n(−)a(n+1)+bF D(N) ×

×
∫

dµdP
sinh 2πP sinh 2πP/k

cosh 2πP + cos 2πµ
e−

2iπµb
k ×

×
∫

dp0
e
−4π

√
µ2+k∆( n√

2k
+ ib

2k
)

√
µ2 + k∆

∑

r∈Z

e−πεr2
e

4iπr
k

(
√

µ2+k∆−µ) . (B.6)

– 38 –



J
H
E
P
0
1
(
2
0
0
7
)
0
6
9

Now we can take the limit ε → 0 and rewrite this as

π

2
∏

i Ri

∑

a,b

∑

N

∑

̃

sin
π(2̃ + 1)

k

∞∑

n=1

n(−)a(n+1)+bF D(N) ×

×
∫

dµdP
sinh 2πP sinh 2πP/k

cosh 2πP + cos 2πµ
e−2iπb(µ−

√
µ2+k∆) e

−4π
√

µ2+k∆ n√
2k

√
µ2 + k∆

×

×
∑

w∈Z

δ(µ −
√

µ2 + k∆ +
kw

2
) . (B.7)

And finally integrating over µ gives

π

k
∏

i Ri

∑

a,b

∑

N

∑

̃

sin
π(2̃ + 1)

k
(−)a+bF D(N) ×

×
∑

w 6=0

1

|w|

∫
dP

sinh 2πP sinh 2πP/k

cosh 2πP + cos π(2∆
w − kw

2 )

∞∑

n=1

(−)ann e
− 2πn√

2k
(− kw

2
+ 2∆

w )

=
1

4k
∏

i Ri

∑

a,b

∑

N

∑

̃

sin
π(2̃ + 1)

k
(−)bF × (B.8)

×D(N)
∑

w 6=0

1

|w|

∫
dP

sinh 2πP sinh 2πP/k

cosh 2πP + cos π(kw
2 − 2∆

w )

(−)a

sinh2 π

(
kw
2

+ 2∆
w√

2k
+ ia

2

) ,

which is the same as (4.13). The discrete representations contribution is obtained similarly.

C. Long strings emission for bosonic AdS3 backgrounds

In this appendix we discuss the power-law corrections to t long string emission (4.13)

in non-critical bosonic string backgrounds of the form SL(2, R)|k × Rd. In this case the

counting of states can be done quite explicitly. Cancellation of the conformal anomaly in

this background requires

k = 2 +
6

23 − d
. (C.1)

Taking into account the differences between the superstring and bosonic string cases, the

imaginary part of the annulus amplitude for long strings reads

N̄c ∼
∫

ddp

∫
dP

∑

N

D(N)
∑

w 6=0

1

|w|
sinh 2πP sinh 2πP

k−2

cosh 2πP + cos π(kw − E)

1

sinh2 πE√
k

, (C.2)

with

E =
kw

2
+

2

w

[
P 2 + 1/4

k − 2
+

p2

2
+ N − 1

]
(C.3)

At high energies, this amplitude has the asymptotics

N̄c ∼
∑

w 6=0

1

|w|e
−π

√
kw

[∫
dP e

2πP
k−2

− 4π

w
√

k

P2

k−2

] [∫
dp e

− 2π

w
√

k
p2

]d ∑

N

D(N)e
− 4π

w

q

2
k
N

. (C.4)
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Let’s first integrate over the Rd momentum (bringing a factor wd/2) and over the AdS3

radial momentum P :

N̄c ∼
∞∑

w=1

w
d−1
2 e

−2π
√

k
“

1− 1
4(k−2)

”

w ∑

N

D(N)e
− 4πN

w
√

k (C.5)

The asymptotic density of states D(N) corresponds to the counting of oscillator modes for

d + 1 bosons, in the light-cone gauge.

q(d+1)/24

ηd+1(τ)
=

( ∞∏

n=1

(1 − qn)

)−(d+1)

=
∑

N

D(N)qN . (C.6)

One can use the generalized Ramanujan and Hardy formula:

D(N)
NÀ1∼ 1√

2

(
d + 1

24

)d+2
4

N− d
4
−1e2π

q

(d+1)N
6 . (C.7)

Then one replaces the sum over N by an integral:

∑

N

N− d+4
4 e2π

q

(d+1)N
6 e

− 4πN
w
√

k ∼
∫

dN

N
N−d/4e

2π
q

(d+1)N
6

− 4πN
w
√

k (C.8)

∼ w−d/4

∫
dx

x1+d/2
e−x2+

q

(d+1)
√

kπw
6

x ∼ w− d+1
2 eπ

√
k d+1

24
w

Therefore using (C.1) all the exponential terms cancel. We remain with the power-law

corrections, that don’t depend on d:

N̄c ∼
∞∑

w=1

1

w
(C.9)

which is log-divergent. This demonstrates that all the non-critical bosonic AdS3 back-

grounds have a common divergence in long strings emission.
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